L2-029 特立独行的幸福 (25分)

L2-029 特立独行的幸福 (25分)

对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。

另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。

本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。

输入格式:

输入在第一行给出闭区间的两个端点:1<A<B≤10e​4​​ 。

输出格式:

按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。

如果区间内没有幸福数,则在一行中输出 SAD

输入样例 1:

10 40

输出样例 1:

19 8
23 6
28 3
31 4
32 3

注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。

输入样例 2:

110 120

输出样例 2:

SAD

AC

我不会写,我不会写,我不会写。。。

链接在这里

2021天梯赛训练-2——7-11 特立独行的幸福 (25分)

#include<bits/stdc++.h>
#include <iostream>
#include <algorithm>
using namespace std;

int visit[10001];
int x[10001];
int Prime(int x) {
	for(int i=2; i<=sqrt(x); i++) {
		if(x%i==0)
			return 1;//不是素数返回1
	}
	return 2;//是素数返回2
}
//该函数用于计算几次迭代成为幸福数
int fun(int i,int a,int n) {
	int sum=0;
	//循环分离数字 并求平方和
	while(n) {
		sum=sum+(n%10)*(n%10);
		n=n/10;
	}
	if(x[sum]==1)
		return 0;
	x[sum]=1;
	visit[sum]=1;
	if(sum==1)
		return i;
	else
		return fun(i+1,a,sum);
}

int main() {
	int a,b;
	cin>>a>>b;
	bool flag=1;
	int sum[10001];//用于统计几次迭代
	memset(sum,0,sizeof(sum));
	for(int i=a; i<=b; i++) {
		memset(x,0,sizeof(x));
		sum[i]=fun(1,i,i);
	}
	for(int i=a; i<=b; i++) {
		if(sum[i]&&!visit[i]) {
			flag=0;
			cout<<i<<" "<<sum[i]*Prime(i)<<endl;
		}
	}
	if(flag)
		cout<<"SAD\n";
	return 0;
}
7-6 特立独行幸福 (25) 对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行幸福数,其独立性为 2×4=8。 另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。 本题就要求你编写程序,列出给定区间内的所有特立独行幸福数和它的独立性。 输入格式: 输入在第一行给出闭区间的两个端点:1<A<B≤10 ​4 ​​ 。 输出格式: 按递增顺序列出给定闭区间 [A,B] 内的所有特立独行幸福数和它的独立性。每对数字占一行,数字间以 1 个空格隔。 如果区间内没有幸福数,则在一行中输出 SAD。 输入样例 1: 10 40 输出样例 1: 19 8 23 6 28 3 31 4 32 3 注意:样例中,10、13 也都是幸福数,但它们别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行幸福数。 输入样例 2: 110 120 输出样例 2: SAD
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摆烂.MVP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值