L2-029 特立独行的幸福 (25分)
对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。
另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。
本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。
输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤10e4 。
输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。
如果区间内没有幸福数,则在一行中输出 SAD
。
输入样例 1:
10 40
输出样例 1:
19 8
23 6
28 3
31 4
32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。
输入样例 2:
110 120
输出样例 2:
SAD
AC
我不会写,我不会写,我不会写。。。
链接在这里
2021天梯赛训练-2——7-11 特立独行的幸福 (25分)
#include<bits/stdc++.h>
#include <iostream>
#include <algorithm>
using namespace std;
int visit[10001];
int x[10001];
int Prime(int x) {
for(int i=2; i<=sqrt(x); i++) {
if(x%i==0)
return 1;//不是素数返回1
}
return 2;//是素数返回2
}
//该函数用于计算几次迭代成为幸福数
int fun(int i,int a,int n) {
int sum=0;
//循环分离数字 并求平方和
while(n) {
sum=sum+(n%10)*(n%10);
n=n/10;
}
if(x[sum]==1)
return 0;
x[sum]=1;
visit[sum]=1;
if(sum==1)
return i;
else
return fun(i+1,a,sum);
}
int main() {
int a,b;
cin>>a>>b;
bool flag=1;
int sum[10001];//用于统计几次迭代
memset(sum,0,sizeof(sum));
for(int i=a; i<=b; i++) {
memset(x,0,sizeof(x));
sum[i]=fun(1,i,i);
}
for(int i=a; i<=b; i++) {
if(sum[i]&&!visit[i]) {
flag=0;
cout<<i<<" "<<sum[i]*Prime(i)<<endl;
}
}
if(flag)
cout<<"SAD\n";
return 0;
}