通过超分辨率像素引导的Scribble Walking和逐类对比正则化的弱监督医学图像分割(SC-Ne)论文速读

Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization

摘要

基于深度学习的分割通常需要大量数据和密集的手动描绘,这既耗时又昂贵。因此,弱监督学习试图利用稀疏的注释(如涂鸦)进行有效训练,引起了相当大的关注。然而,这种涂鸦监督本质上缺乏足够的结构信息,导致了两个关键挑战:(i)虽然在dice分数指标上取得了良好的性能,但现有方法难以执行令人满意的局部预测,因为在训练期间无法获得所需的结构先验;(ii)由于稀疏和极不完全的监督,类特征分布不可避免地不那么紧凑,导致泛化性差。

本文中,我们提出了SC-Net,这是一种新的涂鸦监督方法,它将超像素引导的涂鸦行走与类对比正则化相结合。
该框架建立在最近的双解码器主干设计之上,其中来自两个略有不同的解码器的预测被随机混合,以提供辅助伪标签监督。除了稀疏和伪监督外,涂鸦还向超像素连接和图像内容引导的未标记像素扩散,以提供尽可能多的密集监督。然后,类对比正则化断开不同类的特征分布,以促进类特征分布的紧凑性。

方法

在这里插入图片描述
在这里插入图片描述

采用简单的线性迭代聚类(SLIC)算法来生成超像素
SLIC工作原理: 首先将图像划分为大小相等的方块网格,然后根据所需的超像素数 K 在每个方块中选择一定数量的种子点。接下来,它根据每个像素的颜色相似度和空间邻近性(距离)迭代地将每个像素分配给最近的种子点。重复此过程,直到聚类收敛或达到预定义的迭代次数。最后,该算法将种子点的位置更新到相应超像素的质心,并重复直到收敛。因此,图像被粗略地分割成 K 个簇。
然后,在获得的超像素的引导下,涂鸦通过以下机制走向未标记的像素:
(i)如果超像素簇与涂鸦重叠,则 涂鸦r 走向该簇中包含的像素;
(ii) 然而,如果超像素簇不与任何涂鸦重叠或与多个涂鸦重叠,则不会为该簇中的像素分配任何标签。尽管我们使用严格的行走约束来扩展标签,但超像素主要基于颜色相似性和与种子点的空间邻近性

采用noise-robust Dice loss来监督模型,公式为:
在这里插入图片描述

成对的对比正则化如下:z为原型,N为原型的数量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述

  • 29
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值