正确的原因是错误的:可解释的 ML 技术能否检测出虚假相关性?

文章探讨了深度神经网络在学习数据中的虚假相关性问题,通过评估解释技术如SHAP和Attri-Net在识别混杂因素上的能力。实验结果显示,这些技术在胸部X射线诊断中对人为添加的混杂因素有较好的识别性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?

摘要

虽然深度神经网络模型提供了无与伦比的分类性能,但它们容易在数据中学习虚假相关性。如果测试数据与训练数据来自相同的分布,则使用性能指标很难检测这种对混淆信息的依赖性。可解释的ML方法,如事后解释或固有的可解释分类器,有望识别错误的模型推理。然而,有好坏参半的证据表明,这些技术中的许多是否真的能够做到这一点。

本文提出了一种严格的评估策略来评估解释技术正确识别虚假相关性的能力。使用这种策略,我们评估了五种事后解释技术和一种固有的可解释方法,以证明它们在胸部 X 射线诊断任务中检测三种人为添加的混杂因素的能力。我们发现,事后技术 SHAP 以及固有的可解释 Attri-Net 提供了最佳性能,可用于可靠地识别错误的模型行为。
代码地址

本文方法

在这里插入图片描述
我们在数据集上训练分类器,其中包含三种类型的人为添加的混杂因素,并用箭头突出显示。然后评估了解释技术正确识别对这些混杂因素的依赖的能力(如Attri-Net [24]所示)

评估策略:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值