Explainable Image Classification with Improved Trustworthiness for Tissue Characterisation
摘要
机器学习模型进行组织表征可以帮助决策并指导安全的肿瘤切除。为了让外科医生信任该模型,需要提供生成的预测的可解释性。对于图像分类模型,像素归因 (PA) 和风险估计是推断可解释性的常用方法。然而,前一种方法缺乏可信度,而后者无法提供模型注意力的视觉解释。
本文提出了第一种方法,该方法将风险估计纳入PA方法,以提高图像分类的可解释性,使其更可信。所提出的方法迭代地应用带有PA方法的分类模型来创建大量PA图。
介绍了一种通过估计像素分布的期望值来生成增强型PA图的方法。此外,变异系数 (CV) 用于估计此增强 PA 地图的像素级风险。因此,所提方法不仅提供了改进的PA图,而且对输出PA值进行了风险估计。
本文方法
使用 ResNet18 在脑膜瘤 pCLE 数据上生成的 PA 图。
目的是生成分类模型的改进 PA 图,同时提供模型可解释性的风险估计ÿ