可解释的图像分类,提高组织表征的可信度论文速读

Explainable Image Classification with Improved Trustworthiness for Tissue Characterisation

摘要

机器学习模型进行组织表征可以帮助决策并指导安全的肿瘤切除。为了让外科医生信任该模型,需要提供生成的预测的可解释性。对于图像分类模型,像素归因 (PA) 和风险估计是推断可解释性的常用方法。然而,前一种方法缺乏可信度,而后者无法提供模型注意力的视觉解释。

本文提出了第一种方法,该方法将风险估计纳入PA方法,以提高图像分类的可解释性,使其更可信。所提出的方法迭代地应用带有PA方法的分类模型来创建大量PA图。
介绍了一种通过估计像素分布的期望值来生成增强型PA图的方法。此外,变异系数 (CV) 用于估计此增强 PA 地图的像素级风险。因此,所提方法不仅提供了改进的PA图,而且对输出PA值进行了风险估计。

本文方法

在这里插入图片描述
使用 ResNet18 在脑膜瘤 pCLE 数据上生成的 PA 图。
在这里插入图片描述
目的是生成分类模型的改进 PA 图,同时提供模型可解释性的风险估计ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值