文章目录
BrainSCK: Brain Structure and Cognition Alignment via Knowledge Injection and Reactivation for Diagnosing Brain Disorders
摘要
背景:
新兴的先进神经影像学研究证据表明,不同脑部疾病(BD)在整个人类生命周期中可能具有共同的神经基础。因此,研究人员旨在创建一个基于神经影像的大规模人群筛查诊断模型,用于多个脑部疾病的识别。现有的模型主要采用迁移学习范式,这些模型基于大规模但与任务关系较弱的外部数据预训练,或者基于健康人群大脑数据预训练,并使用辅助任务(如年龄预测)。前者对人群规模大脑数据中的个体间差异和与BD相关的特征识别较少,而后者则依赖于代理任务与BD任务之间的弱隐式关联。
目的:
本研究提出一种双阶段视觉-语言模型适应策略,通过对外部预训练模型(如BLIP)进行知识注入,来实现不同脑部疾病的准确诊断。该方法通过将基本认知和脑结构特征对齐,旨在在多个BD诊断任务中提高识别准确性。
方法:
首先,利用人类连接组项目(Human Connectome Project)数据,对人口学和心理测量记录进行文本化,构建具有重要认知科学背景的知识注入文本提示。模型旨在学习脑结构图像和认知知识文本之间的对齐关系。然后,我们定制知识激活指令,并进一步调整模型以适应每个BD诊断任务中的认知症状。
结果:
在不同年龄组的三个BD诊断任务中,优于其他现有的最先进方法。该方法展示了一个有前景的、可行的学习范式,可以将大型基础模型适应到认知神经科学和神经病学领域。
代码可在此链接获取:代码地址
方法
Fig. 1. 演示了所提出的知识注入提示和知识激活指令,分别用于模型预训练和下游微调,灵感来源于认知功能、量度和症状之间的概念依赖关系(按颜色编码)。
主要是特征对齐
- 图像编码器:ViT-g
- Q-Former (用 BERT-base初始化)
- 大模型为:BioMedLM
实验结果