2021黑马程序员Java面试宝典笔记(完整版)

这篇博客是2021年黑马程序员的Java面试复习资料,涵盖基础篇(如二分查找、排序算法)、并发篇(线程状态、线程池)、数据结构(ArrayList、LinkedList、Vector的区别与特性)、HashMap的深入解析等。内容详细,适合Java面试准备。
摘要由CSDN通过智能技术生成

2021黑马程序员Java面试宝典笔记(完整版)

哔哩哔哩链接:https://www.bilibili.com/video/BV15b4y117RJ?spm_id_from=333.337.search-card.all.click&vd_source=7c5f1f4c039688f19024d50ef51aaed1

一、基础篇

1. 二分查找

要求

  • 能够用自己语言描述二分查找算法
  • 能够手写二分查找代码
  • 能够解答一些变化后的考法

算法描述

  1. 前提:有已排序数组 A(假设已经做好)

  2. 定义左边界 L、右边界 R,确定搜索范围,循环执行二分查找(3、4两步)

  3. 获取中间索引 M = Floor((L+R) /2)

  4. 中间索引的值 A[M] 与待搜索的值 T 进行比较

    ① A[M] == T 表示找到,返回中间索引

    ② A[M] > T,中间值右侧的其它元素都大于 T,无需比较,中间索引左边去找,M - 1 设置为右边界,重新查找

    ③ A[M] < T,中间值左侧的其它元素都小于 T,无需比较,中间索引右边去找, M + 1 设置为左边界,重新查找

  5. 当 L > R 时,表示没有找到,应结束循环

更形象的描述请参考:binary_search.html

算法实现

public static int binarySearch(int[] a, int t) {
   
    int l = 0, r = a.length - 1, m;
    while (l <= r) {
   
        m = (l + r) / 2;
        if (a[m] == t) {
   
            return m;
        } else if (a[m] > t) {
   
            r = m - 1;
        } else {
   
            l = m + 1;
        }
    }
    return -1;
}

测试代码

public static void main(String[] args) {
   
    int[] array = {
   1, 5, 8, 11, 19, 22, 31, 35, 40, 45, 48, 49, 50};
    int target = 47;
    int idx = binarySearch(array, target);
    System.out.println(idx);
}

解决整数溢出问题

当 l 和 r 都较大时,l + r 有可能超过整数范围,造成运算错误,解决方法有两种:

int m = l + (r - l) / 2;

还有一种是:

int m = (l + r) >>> 1;

其它考法

  1. 有一个有序表为 1,5,8,11,19,22,31,35,40,45,48,49,50 当二分查找值为 48 的结点时,查找成功需要比较的次数

  2. 使用二分法在序列 1,4,6,7,15,33,39,50,64,78,75,81,89,96 中查找元素 81 时,需要经过( )次比较

  3. 在拥有128个元素的数组中二分查找一个数,需要比较的次数最多不超过多少次

对于前两个题目,记得一个简要判断口诀:奇数二分取中间,偶数二分取中间靠左。对于后一道题目,需要知道公式:

n = l o g 2 N = l o g 10 N / l o g 10 2 n = log_2N = log_{10}N/log_{10}2 n=log2N=log10N/log102

其中 n 为查找次数,N 为元素个数

2. 冒泡排序

要求

  • 能够用自己语言描述冒泡排序算法
  • 能够手写冒泡排序代码
  • 了解一些冒泡排序的优化手段

算法描述

  1. 依次比较数组中相邻两个元素大小,若 a[j] > a[j+1],则交换两个元素,两两都比较一遍称为一轮冒泡,结果是让最大的元素排至最后
  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:bubble_sort.html

算法实现

public static void bubble(int[] a) {
   
    for (int j = 0; j < a.length - 1; j++) {
   
        // 一轮冒泡
        boolean swapped = false; // 是否发生了交换
        for (int i = 0; i < a.length - 1 - j; i++) {
   
            System.out.println("比较次数" + i);
            if (a[i] > a[i + 1]) {
   
                Utils.swap(a, i, i + 1);
                swapped = true;
            }
        }
        System.out.println("第" + j + "轮冒泡"
                           + Arrays.toString(a));
        if (!swapped) {
   
            break;
        }
    }
}
  • 优化点1:每经过一轮冒泡,内层循环就可以减少一次
  • 优化点2:如果某一轮冒泡没有发生交换,则表示所有数据有序,可以结束外层循环

进一步优化

public static void bubble_v2(int[] a) {
   
    int n = a.length - 1;
    while (true) {
   
        int last = 0; // 表示最后一次交换索引位置
        for (int i = 0; i < n; i++) {
   
            System.out.println("比较次数" + i);
            if (a[i] > a[i + 1]) {
   
                Utils.swap(a, i, i + 1);
                last = i;
            }
        }
        n = last;
        System.out.println("第轮冒泡"
                           + Arrays.toString(a));
        if (n == 0) {
   
            break;
        }
    }
}
  • 每轮冒泡时,最后一次交换索引可以作为下一轮冒泡的比较次数,如果这个值为零,表示整个数组有序,直接退出外层循环即可

3. 选择排序

要求

  • 能够用自己语言描述选择排序算法
  • 能够比较选择排序与冒泡排序
  • 理解非稳定排序与稳定排序

算法描述

  1. 将数组分为两个子集,排序的和未排序的,每一轮从未排序的子集中选出最小的元素,放入排序子集

  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:selection_sort.html

算法实现

public static void selection(int[] a) {
   
    for (int i = 0; i < a.length - 1; i++) {
   
        // i 代表每轮选择最小元素要交换到的目标索引
        int s = i; // 代表最小元素的索引
        for (int j = s + 1; j < a.length; j++) {
   
            if (a[s] > a[j]) {
    // j 元素比 s 元素还要小, 更新 s
                s = j;
            }
        }
        if (s != i) {
   
            swap(a, s, i);
        }
        System.out.println(Arrays.toString(a));
    }
}
  • 优化点:为减少交换次数,每一轮可以先找最小的索引,在每轮最后再交换元素

与冒泡排序比较

  1. 二者平均时间复杂度都是 O ( n 2 ) O(n^2) O(n2)

  2. 选择排序一般要快于冒泡,因为其交换次数少

  3. 但如果集合有序度高,冒泡优于选择

  4. 冒泡属于稳定排序算法,而选择属于不稳定排序

    • 稳定排序指,按对象中不同字段进行多次排序,不会打乱同值元素的顺序
    • 不稳定排序则反之

稳定排序与不稳定排序

System.out.println("=================不稳定================");
Card[] cards = getStaticCards();
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));

System.out.println("=================稳定=================");
cards = getStaticCards();
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));

都是先按照花色排序(♠♥♣♦),再按照数字排序(AKQJ…)

  • 不稳定排序算法按数字排序时,会打乱原本同值的花色顺序

    [[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]]
    [[♠7], [♠5], [♥5], [♠4], [♥2], [♠2]]
    

    原来 ♠2 在前 ♥2 在后,按数字再排后,他俩的位置变了

  • 稳定排序算法按数字排序时,会保留原本同值的花色顺序,如下所示 ♠2 与 ♥2 的相对位置不变

    [[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]]
    [[♠7], [♠5], [♥5], [♠4], [♠2], [♥2]]
    

4. 插入排序

要求

  • 能够用自己语言描述插入排序算法
  • 能够比较插入排序与选择排序

算法描述

  1. 将数组分为两个区域,排序区域和未排序区域,每一轮从未排序区域中取出第一个元素,插入到排序区域(需保证顺序)

  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:insertion_sort.html

算法实现

// 修改了代码与希尔排序一致
public static void insert(int[] a) {
   
    // i 代表待插入元素的索引
    for (int i = 1; i < a.length; i++) {
   
        int t = a[i]; // 代表待插入的元素值
        int j = i;
        System.out.println(j);
        while (j >= 1) {
   
            if (t < a[j - 1]) {
    // j-1 是上一个元素索引,如果 > t,后移
                a[j] = a[j - 1];
                j--;
            } else {
    // 如果 j-1 已经 <= t, 则 j 就是插入位置
                break;
            }
        }
        a[j] = t;
        System.out.println(Arrays.toString(a) + " " + j);
    }
}

与选择排序比较

  1. 二者平均时间复杂度都是 O ( n 2 ) O(n^2) O(n2)

  2. 大部分情况下,插入都略优于选择

  3. 有序集合插入的时间复杂度为 O ( n ) O(n) O(n)

  4. 插入属于稳定排序算法,而选择属于不稳定排序

提示

插入排序通常被同学们所轻视,其实它的地位非常重要。小数据量排序,都会优先选择插入排序

5. 希尔排序

要求

  • 能够用自己语言描述希尔排序算法

算法描述

  1. 首先选取一个间隙序列,如 (n/2,n/4 … 1),n 为数组长度

  2. 每一轮将间隙相等的元素视为一组,对组内元素进行插入排序,目的有二

    ① 少量元素插入排序速度很快

    ② 让组内值较大的元素更快地移动到后方

  3. 当间隙逐渐减少,直至为 1 时,即可完成排序

更形象的描述请参考:shell_sort.html

算法实现

private static void shell(int[] a) {
   
    int n = a.length;
    for (int gap = n / 2; gap > 0; gap /= 2) {
   
        // i 代表待插入元素的索引
        for (int i = gap; i < n; i++) {
   
            int t = a[i]; // 代表待插入的元素值
            int j = i;
            while (j >= gap) {
   
                // 每次与上一个间隙为 gap 的元素进行插入排序
                if (t < a[j - gap]) {
    // j-gap 是上一个元素索引,如果 > t,后移
                    a[j] = a[j - gap];
                    j -= gap;
                } else {
    // 如果 j-1 已经 <= t, 则 j 就是插入位置
                    break;
                }
            }
            a[j] = t;
            System.out.println(Arrays.toString(a) + " gap:" + gap);
        }
    }
}

参考资料

  • https://en.wikipedia.org/wiki/Shellsort

6. 快速排序

要求

  • 能够用自己语言描述快速排序算法
  • 掌握手写单边循环、双边循环代码之一
  • 能够说明快排特点
  • 了解洛穆托与霍尔两种分区方案的性能比较

算法描述

  1. 每一轮排序选择一个基准点(pivot)进行分区
    1. 让小于基准点的元素的进入一个分区,大于基准点的元素的进入另一个分区
    2. 当分区完成时,基准点元素的位置就是其最终位置
  2. 在子分区内重复以上过程,直至子分区元素个数少于等于 1,这体现的是分而治之的思想 (divide-and-conquer
  3. 从以上描述可以看出,一个关键在于分区算法,常见的有洛穆托分区方案、双边循环分区方案、霍尔分区方案

更形象的描述请参考:quick_sort.html

单边循环快排(lomuto 洛穆托分区方案)

  1. 选择最右元素作为基准点元素

  2. j 指针负责找到比基准点小的元素,一旦找到则与 i 进行交换

  3. i 指针维护小于基准点元素的边界,也是每次交换的目标索引

  4. 最后基准点与 i 交换,i 即为分区位置

public static void quick(int[] a, int l, int h) {
   
    if (l >= h) {
   
        return;
    }
    int p = partition(a, l, h); // p 索引值
    quick(a, l, p - 1); // 左边分区的范围确定
    quick(a, p + 1, h); // 左边分区的范围确定
}

private static int partition(int[] a, int l, int h) {
   
    int pv = a[h]; // 基准点元素
    int i = l;
    for (int j = l; j < h; j++) {
   
        if (a[j] < pv) {
   
            if (i != j) {
   
                swap(a, i, j);
            }
            i++;
        }
    }
    if (i != h) {
   
        swap(a, h, i);
    }
    System.out.println(Arrays.toString(a) + " i=" + i);
    // 返回值代表了基准点元素所在的正确索引,用它确定下一轮分区的边界
    return i;
}

双边循环快排(不完全等价于 hoare 霍尔分区方案)

  1. 选择最左元素作为基准点元素
  2. j 指针负责从右向左找比基准点小的元素,i 指针负责从左向右找比基准点大的元素,一旦找到二者交换,直至 i,j 相交
  3. 最后基准点与 i(此时 i 与 j 相等)交换,i 即为分区位置

要点

  1. 基准点在左边,并且要先 j 后 i

  2. while( i < j && a[j] > pv ) j–

  3. while ( i < j && a[i] <= pv ) i++

private static void quick(int[] a, int l, int h) {
   
    if (l >= h) {
   
        return;
    }
    int p = partition(a, l, h);
    quick(a, l, p - 1);
    quick(a, p + 1, h);
}

private static int partition(int[] a, int l, int h) {
   
    int pv = a[l];
    int i = l;
    int j = h;
    while (i < j) {
   
        // j 从右找小的
        while (i < j && a[j] > pv) {
   
            j--;
        }
        // i 从左找大的
        while (i < j && a[i] <= pv) {
   
            i++;
        }
        swap(a, i, j);
    }
    swap(a, l, j);
    System.out.println(Arrays.toString(a) + " j=" + j);
    return j;
}

快排特点

  1. 平均时间复杂度是 O ( n l o g 2 ⁡ n ) O(nlog_2⁡n ) O(nlog2n),最坏时间复杂度 O ( n 2 ) O(n^2) O(n2)

  2. 数据量较大时,优势非常明显

  3. 属于不稳定排序

洛穆托分区方案 vs 霍尔分区方案

  • 霍尔的移动次数平均来讲比洛穆托少3倍
  • https://qastack.cn/cs/11458/quicksort-partitioning-hoare-vs-lomuto

补充代码说明

  • day01.sort.QuickSort3 演示了空穴法改进的双边快排,比较次数更少
  • day01.sort.QuickSortHoare 演示了霍尔分区的实现
  • day01.sort.LomutoVsHoare 对四种分区实现的移动次数比较

7.ArrayList、LinkedList、Vector

1.ArrayList的扩容机制

ArrayList在jdk1.7:直接创建一个初始容量为10的数组

ArrayList在jdk1.8:一开始创建一个初始容量为0的数组,当添加第一个元素时再创建一个容量为10的数组,之后每次扩容为之前的1.5倍(笼统的说法)。其实它并不是乘以1.5倍,而是使用位运算来实现的。如第二次扩容时为15,那么第三次扩容为多少呢?首先15>>1=7,之后15+7=22,所以第三次扩容为22,第四次扩容为33,以此类推。但是需要注意的是,这是相对于add方法而言的,而addAll方法却有些不一样。

如当我们使用addAll方法一次性添加超过10条元素时会怎么样呢?他会在要扩容的长度和实际添加的元素数量之间选择最大的数作为扩容的长度

代码如下:

// 通过反射获取ArrayList的长度
public static int length(ArrayList<Integer> list) {
   
    try {
   
        Field field = ArrayList.class.getDeclaredField("elementData");
        field.setAccessible(true);
        return ((Object[]) field.get(list)).length;
    } catch (Exception e) {
   
        e.printStackTrace();
        return 0;
    }
}

@Test
public void test5(){
   
    ArrayList arrayList = new ArrayList();
    // 调用ArrayList的空参构造,创建的长度为0(jdk1.8)
    System.out.println(length(arrayList));// 0
    arrayList.add(1);
    // 当使用add添加一个元素后,第一次扩容为10
    System.out.println(length(arrayList));// 10

    ArrayList arrayList2 = new ArrayList();
    arrayList2.addAll(Arrays.asList(1,2,3,4,5,6,7,8,9,10,11));
    // 当使用addAll添加多个元素后,第一次扩容为多少?
    // 发现扩容的长度为11,这是因为它会在要扩容的长度和实际添加的元素数量之间选择最大的数作为扩容的长度
    System.out.println(length(arrayList2));// 11
    arrayList2.addAll(Arrays.asList(1,2));
    System.out.println(length(arrayList2));// 16
}

扩容规则

  1. ArrayList() 会使用长度为零的数组(jdk1.8)

  2. ArrayList(int initialCapacity) 会使用指定容量的数组

  3. public ArrayList(Collection<? extends E> c) 会使用 c 的大小作为数组容量

  4. add(Object o) 首次扩容为 10,再次扩容为上次容量的 1.5 倍(笼统的说法)

  5. addAll(Collection c) 没有元素时,扩容为 Math.max(10, 实际元素个数),有元素时为 Math.max(原容量 1.5 倍, 实际元素个数)

2.Iterator的fail-fast和fail-safe特性
  • Iterator用于遍历集合,那么,我们在遍历的时候是否运行其他人来修改我们的集合?这就牵扯到了iterator的fail-fastfail-safe这两种特性
  • ArrayList、vector 是 fail-fast 的典型代表,遍历的同时不能修改,尽快失败
  • CopyOnWriteArrayList 是 fail-safe 的典型代表,遍历的同时可以修改,原理是读写分离,但是他会牺牲一致性,即并不会遍历新增的元素

首先我们先看ArrayList,

static class Student {
   
    String name;

    public Student(String name) {
   
        this.name = name;
    }

    @Override
    public String toString() {
   
        return "Student{" +
            "name='" + name + '\'' +
            '}';
    }
}

@Test
public void test6(){
   
    ArrayList<Student> list = new ArrayList<>();
    list.add(new Student("A"));
    list.add(new Student("B"));
    list.add(new Student("C"));
    list.add(new Student("D"));
    for (Student student : list) {
   
        System.out.println(student);
    }
    System.out.println(list);
}

如果遍历的时候有其他线程修改了其他代码,会怎么样呢?会报并发修改异常

image-20220209165837432

debug启动,之后我们模拟其他线程修改了list集合,

image-20220209170051929

之后新增一个学生对象E

image-20220209170541861

之后我们继续往下执行,发现报并发修改异常错误。注意:在遍历C的时候并不会报错,会在下一次遍历D的时候报错

image-20220209170848238

我们继续编写代码,测试CopyOnWriteArrayList

@Test
public void test7(){
   
    CopyOnWriteArrayList<Student> list = new CopyOnWriteArrayList<>();
    list.add(new Student("A"));
    list.add(new Student("B"));
    list.add(new Student("C"));
    list.add(new Student("D"));
    for (Student student : list) {
   
        System.out.println(student);
    }
    System.out.println(list);
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值