介绍:Keras是一个高级的神经网络框架,它提供了一种简洁和一致的API,使得用户可以轻松地定义、训练和评估深度学习模型。
Keras的主要优点包括:
用户友好性:Keras以其用户友好的API而闻名,这使得初学者和经验丰富的研究人员都能够轻松上手。
模块化和可组合性:Keras通过模块化的方式组织深度学习模型,用户可以根据自己的需求选择不同的层、激活函数、优化器等组件,并简单地将它们组合在一起构建复杂的模型。
支持多种深度学习库:Keras可以基于多种底层深度学习库进行计算,包括TensorFlow、Theano和CNTK。
灵活性和快速原型设计:Keras支持快速的原型设计和实验,这对于研究人员来说尤其重要。
总的来说,Keras是一个非常方便的深度学习框架,它以TensorFlow或Theano为后端,用它可以快速地搭建深度网络,灵活地选取训练参数来进行网络训练。
1、Keras官方网站
1.1 介绍