#滤波器大小选择?
大部分卷积神经网络都会采用逐层递增(1⇒ 3 ⇒ 5 ⇒ 7)的方式。
每经过一次池化层,卷积层过滤器的深度都会乘以 2;
卷积神经网络中卷积核越小越好吗?
多个小的卷积核叠加使用要远比一个大的卷积核单独使用效果要好的多,在连通性不变的情况下,大大降低了参数个数和计算复杂度。
当然,卷积核也不是越小越好,对于特别稀疏的数据比如下图所示,当使用比较小的卷积核的时候可能无法表示其特征,如果采用较大的卷积核则会导致复杂度极大的增加。
总而言之,我们应该选择多个相对小的卷积核来进行卷积。