卷积核函数的选择
卷积核函数的尺寸并没有一个严格的限制,
那么选择核函数有什么标准了?? 而且看到很多成熟的卷积网络经常使用1*1的卷积核函数,它的作用又是什么了?
1*1卷积核函数的作用
很多卷积神经网络中都会使用1*1的卷积核函数:resNet,GoogleNet。1×1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数。(对于单通道和单个卷积核而言这样理解是可以的),看起来好像并没有什么意义,那它为什么还作用这么广泛了?可以从如下几个方向理解:
1、实现跨通道的交互和信息整合。比如输入是多通道的,由卷积神经网络计算方式可知,对于单一卷积核函数:当前位置的输出值,是由多个通道上的卷积结果相加然后再取激活函数值得到的。所以卷积核函数的尺寸是1*1的话,他可以整合多个通道的信息,而不会改变输入的大小。
2、卷积网络通道数目的升降,由于输出的通道数目是由卷积核函数的数目决定的,所以使用1*1的卷积核,在不改变输入大小的情况下,可以任意增减输出的通道数目。
其余的特性,其实都是由上面两个特性演变而来,不做过多的描述