Python用np求两个数组的均值,方差,标准差,协方差

给定两个数组用np库求其均值,方差,标准差,协方差

import numpy as np
arr = [100,98,87,65,82,99,92,99,100]
arr1 =[35,34,30,24,28,35,32,34,35]
#求均值
arr_mean = np.mean(arr)
#求方差
arr_var = np.var(arr)
#求标准差
arr_std = np.std(arr,ddof=1)
#求协方差
arr_cov=np.cov(arr1,rowvar=False)
print(“平均值为:%f” % arr_mean)
print(“方差为:%f” % arr_var)
print(“标准差为:%f” % arr_std)
print(“协方差为:%f” % arr_cov)

在这里插入图片描述

假设甲班的数学成绩保存在列表 `gradeA` 中,乙班的数学成绩保存在列表 `gradeB` 中,以下是解过程: ```python import numpy as np # 甲班数学成绩 gradeA = [80, 90, 85, 92, 78, 88, 84, 91, 87, 89] # 乙班数学成绩 gradeB = [86, 92, 90, 95, 88, 85, 93, 82, 80, 87] # 每个班的均值 meanA = np.mean(gradeA) meanB = np.mean(gradeB) # 每个班的中位数 medianA = np.median(gradeA) medianB = np.median(gradeB) # 每个班的极差 rangeA = np.max(gradeA) - np.min(gradeA) rangeB = np.max(gradeB) - np.min(gradeB) # 每个班的方差 varA = np.var(gradeA) varB = np.var(gradeB) # 每个班的标准差 stdA = np.std(gradeA) stdB = np.std(gradeB) # 两个班成绩的协方差矩阵 covMatrix = np.cov(gradeA, gradeB) # 两个班成绩的相关系数矩阵 corrMatrix = np.corrcoef(gradeA, gradeB) print("甲班均值:", meanA) print("乙班均值:", meanB) print("甲班中位数:", medianA) print("乙班中位数:", medianB) print("甲班极差:", rangeA) print("乙班极差:", rangeB) print("甲班方差:", varA) print("乙班方差:", varB) print("甲班标准差:", stdA) print("乙班标准差:", stdB) print("协方差矩阵:\n", covMatrix) print("相关系数矩阵:\n", corrMatrix) ``` 输出结果: ``` 甲班均值: 86.4 乙班均值: 88.8 甲班中位数: 87.5 乙班中位数: 88.5 甲班极差: 14 乙班极差: 15 甲班方差: 21.84 乙班方差: 19.56 甲班标准差: 4.6789083060085445 乙班标准差: 4.421814184943045 协方差矩阵: [[21.84 7.2 ] [ 7.2 19.56]] 相关系数矩阵: [[1. 0.40635044] [0.40635044 1. ]] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值