线性代数复习

行列式

    1阶、2阶行列式

n阶行列式

全排列
逆序和逆序数
n阶行列式是由数构成的“正方形”
对角线、上三角、下三角、主对角线、次对角线
此对角线的值为(-1)^n(n-1)/2对角线之积

行列式性质

1、转置的值不变
2、互换两行/列的行列式的值变为其相反数
3、乘K加到另一行值不变
4、行列式可以拆开 k+l变为k,1
5、公因子可以提出
eg
  [2 4 6]=2*[1 2 3]
6、一个代数余子式对应的乘上另一零一行的元素的累积和为0
7、这是拉普拉是的一种特殊情况
|A *|   |A 0|
   |0 B| = |* B| =|A||B|

行列式值的计算

加/减法:[α,β,γ,η]-[1,1,3,3]=[α-1,β-1,γ-3,η-3]
转置:就是由m*n 变为n*m,行变成列,列变成行
*这里符号应该用括号,但是打不出来两行的括号*
乘法:[α,β] *  |α,β,γ,η|  =[α*α+αβ,α*β+β*β,α*γ+β*γ,αη+βη]
               |α,β,γ,η|
满足的规律:
交换律:a+b=b+a
结合律:(a+b)+c =a+b+c
分配律:c(a+b)=ca+cb
数乘结合律:c(da)=cda
cA=0--->c或者A等于0 
余子式
代数余子式就是在余子式的基础上加了(-1)^行+列
按行展开、按列展开的全体代数余子式的和就是行列式的值
克拉默法则
|A|!=则有唯一解
拉普拉斯定义:
范德蒙行列式:

矩阵:就是一个表

概念以及定义

            矩阵的定义:就是一个M*N的表
            当M=N时,称之为N阶方阵
            行/列向量:就是行/列为一
            同型矩阵:
                    EG:A为m*n,B也为m*n那么A和B就是同型矩阵
            矩阵相等:在同型的基础上元素对应相等即可
            矩阵相等的定义

矩阵的运算

            矩阵的线性运算
            矩阵的乘法
            就是行对列
            矩阵的转置
            矩阵的幂
            eg:A^2=A*A
线性相关性
EG:
    A:系数矩阵,X:变量,b
    AX=0,那么就是线性的
    AX=b是是非线性的

矩阵的逆

        逆:可逆的条件是|A|!=0
        eg:A*B=1,那么B=^-1,就称B为A的逆,A要存在的前提是|A|!=0
        逆的求法
        |A|^-1*A^*或者[A|E]-->[E|E^-A]
        逆的性质:
                1、(A^-1)^-1=A
                2、 (A的转置)^-1=(A^-1)的转置
                3、(AB)^-1=B^-1A^-1
                4、|A^-1|=|A|^-1
                5、|A^*|=|A|^-1,(A*)^-1=|A|^-1*A
                 
        伴随矩阵:
                AA^*=A^*A=|A|E
                (A^*)^T=(A^T)^*
                (A^*)*-1=|A|^-1A
                A^*=|A|A^-1
                (A^-1)^-1=|A|^n-2*A
                (A^-1)^*=(A^*)^-1
        由每个元素对应的代数余子式构成
        矩阵多项式

矩阵分块法

            分块矩阵
            分块矩阵的性质

特殊矩阵

        奇异矩阵:|A|=0
        非奇异矩阵:
        单位矩阵:就是一个全为0的

矩阵的初等变化

            矩阵的初等变换
            矩阵初等变换的性质
            三种初等矩阵:上/下三角行列式,对角线
            初等矩阵就是单位矩阵经过一次初等变化矩阵
            求逆
             |A|^-1*A^*或者[A|E]-->[E|E^-A]

矩阵的秩:非0子式的最大阶数

秩的求法
也就是化为行简化阶梯型的后的行数
秩的性质
几种特殊的矩阵
单位矩阵,

线性方程的解

1、n元线性方程组有解
2、线性方程的通解、基础解析
3、求解的方法

矩阵的应用

AX=β,η是其解即Aη=β
矩阵乘积和向量组线性表示的联系
n阶A可逆<==>|A|!=0,A满秩,A的行/列向量组线性无关,AX=β有唯一解,AX=0只有0解,0不是A的特征解

向量

  n为向量:就是有多少元素
  线性组合:就是对于α,α1,α2,α3......αn如果有一组数K1,K2.......Kn使的K1α1+K2α2+K2α2+......Knα1n=α
  那么就称α是α1+α2+α3+α4+..........αn的线性组合
  n维单位坐标向量:
                (1,0,0,0.....0)
                 (0,1,0,0.......0)
                 (0,0,1,0.......0)
                 .................
                 (0,0,0,0.......1)
 线性表示:
 线性相关:
 线性无关:
 性质:
 1、只有一个向量α的向量组线性相关的充要条件是α=0;
 2、含0向量的向量必定线性相关
 3、如果向量组中元素对应相等或成比例那么比线性相关
 4、如果向量部分相关那么该向量组线性相关
    ---->线性无关的话,任一部分线性无关
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值