自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(166)
  • 资源 (24)
  • 论坛 (5)
  • 收藏
  • 关注

原创 Yang不等式,Hölder不等式与闵可夫斯基(Minkowski)不等式

Yang不等式∀a,b≥0,p,q>0,∀a,b≥0,p,q>0,\forall a, b \ge 0, p, q\gt 0, 若 1p+1q=1,1p+1q=1,\dfrac{1}{p} + \dfrac{1}{q} = 1, 则: ab≤app+bqq,ab≤app+bqq,ab \le \dfrac{a^p}{p} + \dfrac{b^q}{q}, 且当且仅当 ap=...

2017-10-29 22:22:33 7426

原创 gRPC

Protocol buffer data is structured as messages, where each message is a small logical record of information containing a series of name-value pairs called fields.Service method: Unary RPC Server s...

2018-08-21 17:13:03 342

原创 Deep Learning Notes: Chapter 1 Introduction

前言最近开始读《Deep Learning》一书。这让我有了一个边读书边写笔记的动机:很有必要有一个笔记,能够让人很轻松流畅的读懂这本书的核心内容,至少可以把握住这本书的脉络。 由于终究是英文表达更地道,因此该笔记都是节选自书中的原文。各位读者如果有建议或意见,欢迎留言。谢谢!Deep Learning Chapter 1 Introduction Concept Des...

2018-08-18 20:16:48 188

原创 Pro Git Notes

Git is a Distributed Version Control Systems (DVCSs). Clients fully mirror of the repository, including its full history.

2018-08-12 01:38:23 139

原创 多元函数的牛顿迭代法

f(X)=f(X0)+f′(X0)ΔX+12(ΔX)Tf″(X0)ΔXf(X)=f(X0)+f′(X0)ΔX+12(ΔX)Tf″(X0)ΔXf(X) = f(X_0) + f'(X_0) \Delta X + \dfrac {1} {2} \left ( \Delta X \right ) ^T f''(X_0) \Delta X 于是 f′(X)=f′(X0)+f″(X0)ΔXf′(X)=f′...

2018-08-09 17:55:05 7351

原创 牛顿迭代法

若 x=F(x)x=F(x)x = F(x) 等价于 f(x)=0f(x)=0f(x) = 0 则F(x)F(x)F(x) 称为迭代函数。f(x)f(x)f(x) 有二阶连续导数,且 f′(x)≠0f′(x)≠0f'(x) \neq 0 则 ∀x0,x∈R,∀x0,x∈R,\forall x_0, x \in \mathbb R, 若 f(x0)=0f(x0)=0f(x_0) = 0 则 ...

2018-08-09 09:02:05 755

原创 Nesterov Momentum

x_ahead = x + mu * v# evaluate dx_ahead (the gradient at x_ahead instead of at x)v = mu * v - learning_rate * dx_aheadx += v=>x_prev = xv_prev = vx_ahead = x_prev+ mu * v_prev v = mu * v_...

2018-08-09 08:19:11 994

原创 CS231n Note

CS231n NoteConcepts Concept Description Image Classification Object Detection Action Classification Image Captioning Semantic Segmentation Perceptual ...

2018-08-04 20:56:43 209

原创 Clockwise/Spiral Rule to parse C declaration

http://c-faq.com/decl/spiral.anderson.html

2018-05-01 18:32:17 115

原创 推荐系统

推荐方式社会化推荐(social recommendation) 基于内容的推荐(content-based filtering) 协同过滤(collaborative filtering)推荐系统评测推荐系统试验方法离线试验 用户调查 在线试验(AB测试)评测指标用户满意度预测准确度覆盖率多样性新颖性惊喜度(serendipity)信任度实时性...

2018-04-25 21:52:44 161

原创 机器学习的求导公式

机器学习的求导公式损失函数的求导公式设 loss(X)loss⁡(X)\operatorname {loss} \left (X\right ) 为单个样本 XXX 的损失函数, A=g(Z)=⎛⎝⎜⎜g(z1)⋮g(zn)⎞⎠⎟⎟A=g(Z)=(g⁡(z1)⋮g⁡(zn))A = g\left (Z\right ) = \begin{pmatrix} \operatorname {g...

2018-04-18 12:30:10 520 2

原创 Recurrent Neural Networks

Examples of Sequence DataSpeech RecognitionMusic GenerationSentiment ClassificationDNA Sequence AnalysisMachine TranslationVideo Activity RecognitionName Entity RecognitionNotation ...

2018-04-16 06:28:37 288

原创 Neural Style Transfer

ConceptContent C + Style S = Generated image GWhat are Deep ConvNet Learning?More abstract features in deeper layer.Cost Functionloss(G;C,S)=αlosscontent(S,G)+βlossstyle(C,G)loss⁡(G;C,...

2018-04-16 00:04:20 150

原创 Face Recognition

Face Verification vs Face Recognition Name Input Output Description Face Verification Image and Name / ID Is the image the person with this given ID? Face Recognition Ima...

2018-04-15 19:39:30 291

原创 Object Detection

Concepts Name Description yyy Object Classification At most one object y=⎛⎝⎜c1c2c3⎞⎠⎟y=(c1c2c3)y = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} Object Localization At most ...

2018-04-15 19:17:33 115

原创 Convolutional Neural Networks

PaddingOutput Dimensionn+2p−f+1n+2p−f+1n + 2 p - f + 1Padding TypesValid: p=0p=0p = 0 Same: n+2p−f+1=n⇒p=f−12n+2p−f+1=n⇒p=f−12n + 2 p - f + 1 = n \Rightarrow p = \dfrac {f - 1} {2}Str...

2018-04-13 01:34:11 163

原创 Learning from Multiple tasks

Where Transfer Learning from A to B Makes SenseTask A and B have the same input X.You have a lot more data for A than B.Low level features in A could be helpful for learning B.Where Multi-task...

2018-04-12 23:37:42 204

原创 Bias and Variance with Mismatched Distributions

Bias and Variance with Mismatched Distributions

2018-04-12 22:08:00 114

原创 Softmax Function

Sigmoid Functionsigmoid(z)=11−e−zsigmoid⁡(z)=11−e−z\operatorname {sigmoid} (z) = \dfrac {1} {1 - e ^{-z}}Softmax Functionsoftmax(zi;Z)=ezi∑i=1nezi,1≤i≤nsoftmax⁡(zi;Z)=ezi∑i=1nezi,1≤i≤n\operato...

2018-04-11 22:13:26 145 1

原创 Momentum, RMSprob and Adam

Gradient Descent with MomentumCompute exponentially weighed average of gradient, and use the gradient to update weights.AlgorithmOn iteration t:Compute dWd⁡W\operatorname {d} W and dbd⁡b\op...

2018-04-11 02:03:54 331

原创 Exponentially Weighted Averages

Exponentially Weighted Averagesvt=βvt−1+(1−β)θtvt=βvt−1+(1−β)θtv _{t} = \beta v _{t - 1} + \left (1 - \beta \right ) \theta _{t} =β[βvt−2+(1−β)θt−1]+(1−β)θt=β[βvt−2+(1−β)θt−1]+(1−β)θt= \beta \lef...

2018-04-11 00:09:48 322

原创 Shallow Neural Network Week 3

Single SampleSymbolsX=⎛⎝⎜⎜x1⋮xnx⎞⎠⎟⎟,Y=⎛⎝⎜⎜y1⋮yny⎞⎠⎟⎟,X=(x1⋮xnx),Y=(y1⋮yny),X = \begin{pmatrix} x_1 \\ \vdots \\ x_{n _{x}} \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_{n _{y}} \end{pm...

2018-04-04 05:30:25 100

原创 Activation function in Neural Network

Logistic / Sigmoid functiong(x)=11+e−x=ex1+exg(x)=11+e−x=ex1+exg(x) = \dfrac {1} {1 + e ^{-x}} = \dfrac {e ^{x}} {1 + e ^{x}} g(−x)=11+ex=e−x1+e−xg(−x)=11+ex=e−x1+e−xg(-x) = \dfrac {1} {1 + e ^{x}}...

2018-03-30 19:47:41 173

原创 Code to download files from google drive to colab

Code:def download_from_google_drive(file_name_prefix): # 1. Authenticate and create the PyDrive client. auth.authenticate_user() gauth = GoogleAuth() gauth.credentials = GoogleCredentials....

2018-03-26 15:06:02 327

原创 多元高斯分布

f(X;μ,Σ)=1(2π)n/2|Σ|1/2exp(−12(X−μ)⊺Σ−1(X−μ))f(X;μ,Σ)=1(2π)n/2|Σ|1/2exp⁡(−12(X−μ)⊺Σ−1(X−μ))f\left (X ; \mu , \Sigma\right ) = \dfrac {1} {{\left (2 \pi\right )} ^ {n / 2} {\vert \Sigma \vert } ^ {1 / ...

2018-03-24 01:08:19 177

原创 一元高斯分布

f(x;μ,σ)=12π−−√σe−(x−μ)22σ2f(x;μ,σ)=12πσe−(x−μ)22σ2f\left (x; \mu, \sigma \right ) = \dfrac {1} {\sqrt {2 \pi} \sigma} e ^ { - \dfrac {\left (x - \mu\right ) ^2} {2 \sigma ^2} } f(μ;μ,σ)=12π−−√σ,f(μ±...

2018-03-23 00:16:02 722

原创 Support Vector Machine's Large Margin

SVM Cost FunctionJ(θ)=C∑i=1m[yicost1(W⊺Xi+θ0)+(1−yi)cost0(W⊺Xi+θ0)]+∑j=1nλ2θ2jJ(θ)=C∑i=1m[yicost1⁡(W⊺Xi+θ0)+(1−yi)cost0⁡(W⊺Xi+θ0)]+∑j=1nλ2θj2J\left (\theta \right ) = C \sum \limits_{i = 1} ^{m} \le...

2018-03-19 12:20:55 125

原创 Cost Function of Support Vector Machine

Logistic Regression 中的函数 f,gf,gf, gf(x)=ln(1+ex),x∈R,g(x)=f(−x)f(x)=ln⁡(1+ex),x∈R,g(x)=f(−x)f(x) = \ln (1 + e ^{x}), x \in \mathbb R, g(x) = f(-x)f,gf,gf, g 的性质f′(x)=ex1+ex>0,x∈Rf′(x)=ex1+e...

2018-03-18 19:05:27 110

原创 Reason of Random Initialization - Neural Networks

Symmetry Problem若对于神经网络任意一层 l,l,l, 该层所有参数 ωli,jωi,jl\omega ^{l} _{i,j} 的初始值都一样,则在梯度下降每次迭代中: {ωl−11,j=ωl−12,j,0≤j≤sl−1,ωli,1=ωli,2,1≤i≤sl+1,,2≤l≤L−1{ω1,jl−1=ω2,jl−1,0≤j≤sl−1,ωi,1l=ωi,2l,1≤i≤sl+1,,2...

2018-03-18 14:04:45 97

原创 Backpropagation Algorithm 的梯度

损失函数 J(θ)J⁡(θ)\operatorname {J} \left (\mathbf {\theta}\right )J(θ)=−1m∑i=1m∑k=1K[y(i)kln(hθ(X(i))k)+(1−y(i)k)ln(1−hθ(X(i))k)]J⁡(θ)=−1m∑i=1m∑k=1K[yk(i)ln⁡(hθ(X(i))k)+(1−yk(i))ln⁡(1−hθ(X(i))k)]\opera...

2018-03-15 23:49:12 111 2

原创 Cost function of Logistic Regression and Neural Network

Logistic / Sigmoid functiong(x)=11+e−x=ex1+exg(x)=11+e−x=ex1+exg(x) = \dfrac {1} {1 + e ^{-x}} = \dfrac {e ^{x}} {1 + e ^{x}}Cost functionLogistic Regressionhθ(X)=f(X⊺θ)=P(y=1|X;θ)hθ(X)=f(X⊺...

2018-03-12 22:25:59 182

原创 Pronunciation Difference between /ʌ/ and /ɑ/

Pronunciation Difference between /ʌ/ and /ɑ/The sound /ʌ/ is pronounced in the following cases:When a word is spelled with the letter “u” in a closed stressed syllable, for example, “luck,” “cup...

2018-03-09 00:39:57 139

原创 机器学习的偏差-方差分解

假设样本变量为 XXX ,它的标签 YYY 为 XXX 的函数 Y=f(X)+ϵY=f(X)+ϵY = f\left (X\right ) + \epsilon 。其中为 ϵϵ\epsilon 机器学习模型学习不到的噪音。 对于机器学习模型 M,M,M, 假设训练后,对 XXX 的预测值为 XXX 的函数 f^(X)f^(X)\hat f \left (X \right ) 。 对于一个测试...

2018-02-26 12:08:00 933

原创 使用梯度下降与牛顿法求解最小平方和问题

问题已知: hW(X)=∑nj=1wjxj+wn+1=∑n+1j=1wjxj=X⊺W,hW(X)=∑j=1nwjxj+wn+1=∑j=1n+1wjxj=X⊺W,h_{W}(X) = \sum _{j = 1} ^{n} w_j x_j + w_{n + 1} = \sum _{j = 1} ^{n + 1} w_j x_j = X ^{\intercal} W, 其中 W=⎛⎝⎜⎜⎜⎜w...

2018-02-25 21:00:06 125

原创 多面集的点的性质

定义设多面集 S={X∈Rn:AX≤b},S={X∈Rn:AX≤b},S = \{ X \in \mathbb R ^n: AX \le b \}, 其中 A=⎛⎝⎜⎜a1⋮am⎞⎠⎟⎟∈Rm×n,A=(a1⋮am)∈Rm×n,A = \begin{pmatrix} a_1\\ \vdots \\ a_m\end{pmatrix} \in \mathbb R ^{m \times n}, ...

2018-02-24 04:39:11 472

原创 射线包含于凸集的充要条件

定理对于任意一个凸集 SSS ,对于任意一条射线 L={X0+td⃗ :t≥0},L={X0+td→:t≥0},L = \{ X_0 + t \vec d : t \ge 0\}, 则 L⊆SL⊆SL \subseteq S 当且仅当 X0∈SX0∈S X_0 \in S 且 S∩LS∩LS \cap L 无界。证明必要性易得。充分性∀X∈Rn,∀X∈...

2018-02-24 03:58:47 335

原创 多面集的表示定理的必要性的证明

多面集的表示定理的必要性的证明前面的内容见 多面集的表示定理4.2 必要性4.2.1 有界情况下若 SSS 有界,由于有界集没有方向,因此只要证明: ∀X∈S,∀X∈S,\forall X \in S, XXX 可以被表示成 X1,⋯,XkX1,⋯,Xk X_1, \cdots, X_k 的凸组合。 即存在集合 {λi∈R:∑i=1kλi=1,λi≥0,i∈N,1≤i...

2018-02-23 21:06:04 1236 2

原创 多面集的方向的性质

多面集的方向的性质引理设向量 X,β,d⃗ ∈V,X,β,d→∈V, X, \beta, \vec d \in V, 1. X≥β,X≥β,X \ge \beta, 则 ∀k∈R,k≥0,X+kd⃗ ≥β⇔d⃗ ≥0⃗ ∀k∈R,k≥0,X+kd→≥β⇔d→≥0→ \forall k \in \mathbb R, k \ge 0, X + k \...

2018-02-21 20:09:47 339

原创 多面集的极点的性质

多面集的极点的性质设多面集 S={X∈Rn:AX≤b},S={X∈Rn:AX≤b},S = \{ X \in \mathbb R ^n: AX \le b \}, 其中 A=⎛⎝⎜⎜a1⋮am⎞⎠⎟⎟∈Rm×n,A=(a1⋮am)∈Rm×n,A = \begin{pmatrix} a_1\\ \vdots \\ a_m\end{pmatrix} \in \mathbb R ^{m \tim...

2018-02-21 17:35:53 457

原创 线性规划的标准型与规范型 (Standard and Canonical Forms)

线性规划的标准型与规范型 (Standard and Canonical Forms) Form Minimization Problem Maximization Problem Standard mins.t.∑j=1ncjxj∑j=1naijxj=bi,i=1,⋯,mxj≥0,j=1,⋯,nmin∑j=1ncjxjs.t.∑j=1naijxj=bi,i=1,...

2018-02-21 15:17:28 3975

Inside Microsoft SQL Server 2008: T-SQL Querying

Inside Microsoft SQL Server 2008: T-SQL Querying

2013-06-06

数据挖掘导论 高清中文完整版 PDF

网传是不错的数据挖掘入门级书籍。 《数据挖掘导论(完整版)》全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。《数据挖掘导论(完整版)》涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。   《数据挖掘导论(完整版)》适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。

2014-06-15

计算机体系结构 — 量化研究方法 英文第五版 Computer Architecture A Quantitative Approach

计算机体系结构 — 量化研究方法 英文第五版 官方电子版 清晰 Computer Architecture A Quantitative Approach 5th English

2014-04-18

Bentley J. More programming pearls

More programming pearls

2013-06-06

Adison.Wesley.Linux.Kernel.Development.3rd.Edition.Jun.2010

Linux Kernel Development 3rd Edition

2013-06-06

Head First Design Patterns

Head First Design Patterns 清晰版

2013-06-06

Introduction to Algorithms, Second Edition

Introduction to Algorithms, Second Edition

2013-06-06

Programming Pearls, Second Edition

Programming Pearls, Second Edition

2013-06-06

Professional Linux Kernel Architecture

Professional Linux Kernel Architecture

2013-06-06

Microsoft.Press.Inside.Microsoft.SQL.Server.2008.TSQL.Programming.Apr.2009

Microsoft.Press.Inside.Microsoft.SQL.Server.2008.TSQL.Programming.Apr.2009

2013-06-06

The Google Resume

The Google Resume 不错的简历编写和就业指导文档

2013-06-06

Wrox.Beginning.Microsoft.SQL.Server.2008.Programming.Jan.2009

Wrox.Beginning.Microsoft.SQL.Server.2008.Programming.Jan.2009

2013-06-06

The Science Of Programming

The Science Of Programming 最好打印出来看

2013-06-06

Architecting Microsoft .NET Solutions for the Enterprise

Architecting Microsoft .NET Solutions for the Enterprise CHM文件

2013-06-06

系统与控制理论中的线性代数

系统与控制理论中的线性代数 汉语,不清晰

2013-06-06

ISOIEC 14882 2014.pdf

ISOIEC 14882 2014.pdf

2017-12-10

多元函数带Peano余项的Taylor公式的推广(无参考资料)

多元函数带Peano余项的Taylor公式的推广(无参考资料)pdf 自己写的推论,没有类似的资料。

2017-11-29

Mathematical Logic.pdf 高清

Mathematical Logic.pdf 高清 Joseph R. Shoenfield 英文

2017-11-07

Logic and Structure pdf 高清 第四版 英文

Logic and Structure pdf 高清 第四版 逻辑学入门,英文

2017-11-07

Matrix CookBook

These pages are a collection of facts (identities, approximations, inequalities, relations, ...) about matrices and matters relating to them. It is collected in this form for the convenience of anyone who wants a quick desktop reference .

2017-11-02

Pattern Recognition and Machine Learning 中英文+答案

Pattern Recognition and Machine Learning.pdf 中英文 带答案 高清 2005 带书签

2017-11-02

编译原理 中英文第二版

编译原理 龙书英文版第二版 高清 中文版第二版 不清晰

2017-11-02

Machine Learning A Probabilistic Perspective

Machine Learning 高清 英文版 2012 亚马逊评论: The closest contender to this book I believe is BRML. Both are excellent textbooks and have accompanying source code. BRML is more accessible, has a free PDF version, and a stronger focus on graphical models. MLAPP has all the qualities of an excellent graduate textbook (unified presentation, valuable learning aids), and yet is unafraid of discussing detail points (e.g. omnipresent results on complexity), as well as advanced and research topics (LDA, L1 regularization).

2017-11-02

Effective C++ & More Effective C++ 随书CD

英文 CD 图书+源码 文件格式: html 文件大小: 8.37M

2009-02-14

能否加快审核进度

发表于 2018-08-31 最后回复 2018-08-31

建议:把“原创”选项移到“发布博客”对话框

发表于 2018-02-09 最后回复 2018-02-09

访问博客出现 502 Bad Gateway

发表于 2017-12-06 最后回复 2017-12-06

发表Markdown博客出现乱码

发表于 2017-11-28 最后回复 2017-12-01

Markdown 博客 支持 newcommand 吗?

发表于 2017-11-03 最后回复 2017-11-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除