*博客头图：

RGB颜色，例如：#AFAFAF

Hover：

RGB颜色，例如：#AFAFAF

RGB颜色，例如：#AFAFAF

# jiongjiong 的专栏

• 博客(166)
• 资源 (24)
• 论坛 (5)
• 收藏
• 关注

#### 原创 Yang不等式，Hölder不等式与闵可夫斯基(Minkowski)不等式

Yang不等式∀a,b≥0,p,q&gt;0,∀a,b≥0,p,q&gt;0,\forall a, b \ge 0, p, q\gt 0, 若 1p+1q=1,1p+1q=1,\dfrac{1}{p} + \dfrac{1}{q} = 1, 则： ab≤app+bqq,ab≤app+bqq,ab \le \dfrac{a^p}{p} + \dfrac{b^q}{q}, 且当且仅当 ap=...

2017-10-29 22:22:33 7426

#### 原创 gRPC

Protocol buffer data is structured as messages, where each message is a small logical record of information containing a series of name-value pairs called fields.Service method: Unary RPC Server s...

2018-08-21 17:13:03 342

#### 原创 Deep Learning Notes: Chapter 1 Introduction

2018-08-18 20:16:48 188

#### 原创 Pro Git Notes

Git is a Distributed Version Control Systems (DVCSs). Clients fully mirror of the repository, including its full history.

2018-08-12 01:38:23 139

#### 原创 多元函数的牛顿迭代法

f(X)=f(X0)+f′(X0)ΔX+12(ΔX)Tf″(X0)ΔXf(X)=f(X0)+f′(X0)ΔX+12(ΔX)Tf″(X0)ΔXf(X) = f(X_0) + f'(X_0) \Delta X + \dfrac {1} {2} \left ( \Delta X \right ) ^T f''(X_0) \Delta X 于是 f′(X)=f′(X0)+f″(X0)ΔXf′(X)=f′...

2018-08-09 17:55:05 7351

#### 原创 牛顿迭代法

2018-08-09 09:02:05 755

#### 原创 Nesterov Momentum

x_ahead = x + mu * v# evaluate dx_ahead (the gradient at x_ahead instead of at x)v = mu * v - learning_rate * dx_aheadx += v=&gt;x_prev = xv_prev = vx_ahead = x_prev+ mu * v_prev v = mu * v_...

2018-08-09 08:19:11 994

#### 原创 CS231n Note

CS231n NoteConcepts Concept Description Image Classification Object Detection Action Classification Image Captioning Semantic Segmentation Perceptual ...

2018-08-04 20:56:43 209

#### 原创 Clockwise/Spiral Rule to parse C declaration

http://c-faq.com/decl/spiral.anderson.html

2018-05-01 18:32:17 115

#### 原创 推荐系统

2018-04-25 21:52:44 161

#### 原创 机器学习的求导公式

2018-04-18 12:30:10 520 2

#### 原创 Recurrent Neural Networks

Examples of Sequence DataSpeech RecognitionMusic GenerationSentiment ClassificationDNA Sequence AnalysisMachine TranslationVideo Activity RecognitionName Entity RecognitionNotation ...

2018-04-16 06:28:37 288

#### 原创 Neural Style Transfer

ConceptContent C + Style S = Generated image GWhat are Deep ConvNet Learning?More abstract features in deeper layer.Cost Functionloss(G;C,S)=αlosscontent(S,G)+βlossstyle(C,G)loss⁡(G;C,...

2018-04-16 00:04:20 150

#### 原创 Face Recognition

Face Verification vs Face Recognition Name Input Output Description Face Verification Image and Name / ID Is the image the person with this given ID? Face Recognition Ima...

2018-04-15 19:39:30 291

#### 原创 Object Detection

Concepts Name Description yyy Object Classification At most one object y=⎛⎝⎜c1c2c3⎞⎠⎟y=(c1c2c3)y = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} Object Localization At most ...

2018-04-15 19:17:33 115

#### 原创 Convolutional Neural Networks

PaddingOutput Dimensionn+2p−f+1n+2p−f+1n + 2 p - f + 1Padding TypesValid: p=0p=0p = 0 Same: n+2p−f+1=n⇒p=f−12n+2p−f+1=n⇒p=f−12n + 2 p - f + 1 = n \Rightarrow p = \dfrac {f - 1} {2}Str...

2018-04-13 01:34:11 163

#### 原创 Learning from Multiple tasks

Where Transfer Learning from A to B Makes SenseTask A and B have the same input X.You have a lot more data for A than B.Low level features in A could be helpful for learning B.Where Multi-task...

2018-04-12 23:37:42 204

#### 原创 Bias and Variance with Mismatched Distributions

Bias and Variance with Mismatched Distributions

2018-04-12 22:08:00 114

#### 原创 Softmax Function

Sigmoid Functionsigmoid(z)=11−e−zsigmoid⁡(z)=11−e−z\operatorname {sigmoid} (z) = \dfrac {1} {1 - e ^{-z}}Softmax Functionsoftmax(zi;Z)=ezi∑i=1nezi,1≤i≤nsoftmax⁡(zi;Z)=ezi∑i=1nezi,1≤i≤n\operato...

2018-04-11 22:13:26 145 1

#### 原创 Momentum, RMSprob and Adam

Gradient Descent with MomentumCompute exponentially weighed average of gradient, and use the gradient to update weights.AlgorithmOn iteration t:Compute dWd⁡W\operatorname {d} W and dbd⁡b\op...

2018-04-11 02:03:54 331

#### 原创 Exponentially Weighted Averages

Exponentially Weighted Averagesvt=βvt−1+(1−β)θtvt=βvt−1+(1−β)θtv _{t} = \beta v _{t - 1} + \left (1 - \beta \right ) \theta _{t} =β[βvt−2+(1−β)θt−1]+(1−β)θt=β[βvt−2+(1−β)θt−1]+(1−β)θt= \beta \lef...

2018-04-11 00:09:48 322

#### 原创 Shallow Neural Network Week 3

Single SampleSymbolsX=⎛⎝⎜⎜x1⋮xnx⎞⎠⎟⎟,Y=⎛⎝⎜⎜y1⋮yny⎞⎠⎟⎟,X=(x1⋮xnx),Y=(y1⋮yny),X = \begin{pmatrix} x_1 \\ \vdots \\ x_{n _{x}} \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_{n _{y}} \end{pm...

2018-04-04 05:30:25 100

#### 原创 Activation function in Neural Network

Logistic / Sigmoid functiong(x)=11+e−x=ex1+exg(x)=11+e−x=ex1+exg(x) = \dfrac {1} {1 + e ^{-x}} = \dfrac {e ^{x}} {1 + e ^{x}} g(−x)=11+ex=e−x1+e−xg(−x)=11+ex=e−x1+e−xg(-x) = \dfrac {1} {1 + e ^{x}}...

2018-03-30 19:47:41 173

2018-03-26 15:06:02 327

#### 原创 多元高斯分布

f(X;μ,Σ)=1(2π)n/2|Σ|1/2exp(−12(X−μ)⊺Σ−1(X−μ))f(X;μ,Σ)=1(2π)n/2|Σ|1/2exp⁡(−12(X−μ)⊺Σ−1(X−μ))f\left (X ; \mu , \Sigma\right ) = \dfrac {1} {{\left (2 \pi\right )} ^ {n / 2} {\vert \Sigma \vert } ^ {1 / ...

2018-03-24 01:08:19 177

#### 原创 一元高斯分布

f(x;μ,σ)=12π−−√σe−(x−μ)22σ2f(x;μ,σ)=12πσe−(x−μ)22σ2f\left (x; \mu, \sigma \right ) = \dfrac {1} {\sqrt {2 \pi} \sigma} e ^ { - \dfrac {\left (x - \mu\right ) ^2} {2 \sigma ^2} } f(μ;μ,σ)=12π−−√σ,f(μ±...

2018-03-23 00:16:02 722

#### 原创 Support Vector Machine's Large Margin

SVM Cost FunctionJ(θ)=C∑i=1m[yicost1(W⊺Xi+θ0)+(1−yi)cost0(W⊺Xi+θ0)]+∑j=1nλ2θ2jJ(θ)=C∑i=1m[yicost1⁡(W⊺Xi+θ0)+(1−yi)cost0⁡(W⊺Xi+θ0)]+∑j=1nλ2θj2J\left (\theta \right ) = C \sum \limits_{i = 1} ^{m} \le...

2018-03-19 12:20:55 125

#### 原创 Cost Function of Support Vector Machine

Logistic Regression 中的函数 f,gf,gf, gf(x)=ln(1+ex),x∈R,g(x)=f(−x)f(x)=ln⁡(1+ex),x∈R,g(x)=f(−x)f(x) = \ln (1 + e ^{x}), x \in \mathbb R, g(x) = f(-x)f,gf,gf, g 的性质f′(x)=ex1+ex&gt;0,x∈Rf′(x)=ex1+e...

2018-03-18 19:05:27 110

#### 原创 Reason of Random Initialization - Neural Networks

Symmetry Problem若对于神经网络任意一层 l,l,l, 该层所有参数 ωli,jωi,jl\omega ^{l} _{i,j} 的初始值都一样，则在梯度下降每次迭代中： {ωl−11,j=ωl−12,j,0≤j≤sl−1,ωli,1=ωli,2,1≤i≤sl+1,,2≤l≤L−1{ω1,jl−1=ω2,jl−1,0≤j≤sl−1,ωi,1l=ωi,2l,1≤i≤sl+1,,2...

2018-03-18 14:04:45 97

#### 原创 Backpropagation Algorithm 的梯度

2018-03-15 23:49:12 111 2

#### 原创 Cost function of Logistic Regression and Neural Network

Logistic / Sigmoid functiong(x)=11+e−x=ex1+exg(x)=11+e−x=ex1+exg(x) = \dfrac {1} {1 + e ^{-x}} = \dfrac {e ^{x}} {1 + e ^{x}}Cost functionLogistic Regressionhθ(X)=f(X⊺θ)=P(y=1|X;θ)hθ(X)=f(X⊺...

2018-03-12 22:25:59 182

#### 原创 Pronunciation Difference between /ʌ/ and /ɑ/

Pronunciation Difference between /ʌ/ and /ɑ/The sound /ʌ/ is pronounced in the following cases:When a word is spelled with the letter “u” in a closed stressed syllable, for example, “luck,” “cup...

2018-03-09 00:39:57 139

#### 原创 机器学习的偏差-方差分解

2018-02-26 12:08:00 933

#### 原创 使用梯度下降与牛顿法求解最小平方和问题

2018-02-25 21:00:06 125

#### 原创 多面集的点的性质

2018-02-24 04:39:11 472

#### 原创 射线包含于凸集的充要条件

2018-02-24 03:58:47 335

#### 原创 多面集的表示定理的必要性的证明

2018-02-23 21:06:04 1236 2

#### 原创 多面集的方向的性质

2018-02-21 20:09:47 339

#### 原创 多面集的极点的性质

2018-02-21 17:35:53 457

#### 原创 线性规划的标准型与规范型 (Standard and Canonical Forms)

2018-02-21 15:17:28 3975

#### Inside Microsoft SQL Server 2008: T-SQL Querying

Inside Microsoft SQL Server 2008: T-SQL Querying

2013-06-06

2014-06-15

2014-04-18

#### Bentley J. More programming pearls

More programming pearls

2013-06-06

Linux Kernel Development 3rd Edition

2013-06-06

2013-06-06

#### Introduction to Algorithms, Second Edition

Introduction to Algorithms, Second Edition

2013-06-06

#### Programming Pearls, Second Edition

Programming Pearls, Second Edition

2013-06-06

#### Professional Linux Kernel Architecture

Professional Linux Kernel Architecture

2013-06-06

#### Microsoft.Press.Inside.Microsoft.SQL.Server.2008.TSQL.Programming.Apr.2009

Microsoft.Press.Inside.Microsoft.SQL.Server.2008.TSQL.Programming.Apr.2009

2013-06-06

2013-06-06

#### Wrox.Beginning.Microsoft.SQL.Server.2008.Programming.Jan.2009

Wrox.Beginning.Microsoft.SQL.Server.2008.Programming.Jan.2009

2013-06-06

#### The Science Of Programming

The Science Of Programming 最好打印出来看

2013-06-06

#### Architecting Microsoft .NET Solutions for the Enterprise

Architecting Microsoft .NET Solutions for the Enterprise CHM文件

2013-06-06

2013-06-06

#### ISOIEC 14882 2014.pdf

ISOIEC 14882 2014.pdf

2017-12-10

2017-11-29

#### Mathematical Logic.pdf 高清

Mathematical Logic.pdf 高清 Joseph R. Shoenfield 英文

2017-11-07

#### Logic and Structure pdf 高清 第四版 英文

Logic and Structure pdf 高清 第四版 逻辑学入门，英文

2017-11-07

#### Matrix CookBook

These pages are a collection of facts (identities, approximations, inequalities, relations, ...) about matrices and matters relating to them. It is collected in this form for the convenience of anyone who wants a quick desktop reference .

2017-11-02

#### Pattern Recognition and Machine Learning 中英文+答案

Pattern Recognition and Machine Learning.pdf 中英文 带答案 高清 2005 带书签

2017-11-02

2017-11-02

#### Machine Learning A Probabilistic Perspective

Machine Learning 高清 英文版 2012 亚马逊评论： The closest contender to this book I believe is BRML. Both are excellent textbooks and have accompanying source code. BRML is more accessible, has a free PDF version, and a stronger focus on graphical models. MLAPP has all the qualities of an excellent graduate textbook (unified presentation, valuable learning aids), and yet is unafraid of discussing detail points (e.g. omnipresent results on complexity), as well as advanced and research topics (LDA, L1 regularization).

2017-11-02

2009-02-14

#### Markdown 博客 支持 newcommand 吗？

###### 空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝