极限、连续与求极限

函数

概念

分为函数极限和数列极限
1、数列极限

lim ⁡ n → ∞ x n = A < = > ∀ ε > 0 , ∃ 正 整 数 N , 当 n > N 就 有 ∣ x n − A ∣ = ε \lim_{n \to \infty}x_n = A<=>\forall\varepsilon>0,\exists正整数N,当n>N 就有|x_n-A|=\varepsilon nlimxn=A<=>ε>0,Nn>NxnA=ε
如果 x n {x_n} xn存在有限数,就称 x n 收 敛 {x_n}收敛 xn,否者该数就是发散的
2、函数的极限
定义很麻烦,做题用这个:
lim ⁡ x → x 0 f − ( x ) = lim ⁡ x → x 0 f + ( x ) = lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0}{f_-{(x)}}=\lim_{x \to x_0}{f_+{(x)}}=\lim_{x \to x_0}{f(x)} xx0limf(x)=xx0limf+(x)=xx0limf(x)
这里的 x 0 x_0 x0可以为任意数,包括 ± ∞ \pm\infty ±。左右极限存在同时相等那么极限就是存在的,否者的话就是间断点。(考试的时候分为数列极限和函数极限)
也可以用夹逼定理
单调函数有界必收敛定理
还有这俩个结论:
lim ⁡ x t o x 0 f ( x ) = A     且 lim ⁡ x → x 0 g ( x ) 不 存 在 , 那 么 lim ⁡ [ f ( x ) + g ( x ) ] 也 不 存 在 , 如 果 又 有 A ≠ 0 那 么 ] lim ⁡ x → x 0 [ f ( x ) + g ( x ) ] 也 不 存 在 \lim_{x to x_0}f(x)=A~~~且\lim_{x \to x_0}g(x)不存在,那么\lim[f(x)+g(x)]也不存在,如果又有A\not ={0}那么]\lim_{x \to x_0}[f(x)+g(x)]也不存在 xtox0limf(x)=A   xx0limg(x)lim[f(x)+g(x)]A=0]xx0lim[f(x)+g(x)]

若 f ( x 0 + 0 ) ≠ f ( x 0 − 0 ) 那 么 lim ⁡ x → x 0 f ( x ) 不 存 在 若f(x_0+0)\not ={f(x_0-0)}那么\lim_{x \to x_0}f(x)不存在 f(x0+0)=f(x00)xx0limf(x)
当x-> ∞ \infty 时对于含有 a x ( a > 0 , a ≠ 1 ) a^x(a>0,a\not ={1}) ax(a>0,a=1)时或者arctanx或者aercotx的函数极限,要对 x − > − ∞ 和 x − > + ∞ x->-\infty和x->+\infty x>x>+分别求极限。

性质

设 lim ⁡ n t o ∞ x n = a , lim ⁡ n → ∞ = b 设\lim_{n to \infty}x_n=a,\lim_{n \to \infty}=b ntolimxn=a,nlim=b
那么:
1、若a>b,则 ∃ ψ \exist \psi ψ,当n> ψ \psi ψ x n > y n x_n>y_n xn>yn
2、若n< ψ \psi ψ,则 x n > y n x_n>y_n xn>yn,那么a>b
保号性:若有
lim ⁡ x → x o f ( x ) = A \lim_{x \to x_o}{f(x)}=A xxolimf(x)=A
那么左边一般小于0,右边大于0,不严谨,经验
有界性:
若有极限
lim ⁡ x → x 0 f ( x ) = A \lim_{x \to x_0}f(x)=A xx0limf(x)=A
则在f(x)在 x 0 x_0 x0的某空心邻域 U 0 ( x 0 , ϕ ) = x ∣ 0 < ∣ x − x 0 ∣ < ϕ U_0(x_0,\phi)={x|0<|x-x_0|<\phi} U0(x0,ϕ)=x0<xx0<ϕ内有界。
重要极限:
lim ⁡ x t o 0 s i n x x = 1      lim ⁡ x → ∞ ( 1 + 1 x ) x = e      lim ⁡ x → 0 ln ⁡ ( 1 + x ) x = 1 \lim_{x to 0}\frac{sinx}{x}=1~~~~ \lim_{x \to \infty}(1+\frac{1}{x})^x=e~~~~ \lim_{x \to 0}\frac{\ln(1+x)}{x}=1 xto0limxsinx=1    xlim(1+x1)x=e    x0limxln(1+x)=1

常见的函数

复合函数

常见函数

极限

定义性质,判别极限与不存在的方法

函数极限

直接运算

1、四则运算 
也就是加减乘除,

lim ⁡ x → a f ( x ) g ( x )     lim ⁡ x → a [ f ( x ) + g ( x ) ] \lim_{x \to a}\frac{f(x)}{g(x)}~~~ \lim_{x \to a}[f(x)+g(x)] xalimg(x)f(x)   xalim[f(x)+g(x)]
、幂级数运算、代入法

未定义

分为

0 0 和 ∞ ∞ 两 种 类 型 \frac{0}{0}和\frac{\infty}{\infty}两种类型 00
解题的方法为
1、洛必达法则(常用)
2、泰勒公式
3、还有常用的等价无穷小(常用)
4、变量替换
5、重要极限(常用)
6、直接带入
7、消除因子
8、抓大放小
9、分段函数求极限
10、大题的话会分别求左右极限
11、用导数定义
12、用定积分求n项和

分别求左右极限

数列极限

递归函数

x n − 1 = f ( x n ) x_{n-1}=f(x_n) xn1=f(xn)

n项和的数列

恒等变形、夹逼法、化为定积分、级数求和

n项积的数列

恒等变形、化为n项和

一般情况

函数极限转化、恒等变形、夹逼法

无穷

概念:一个数无限的趋近于0就是无穷小

eg:

lim ⁡ x → ∞ 1 x 就 是 等 价 无 穷 小 \lim_{x \to \infty}\frac{1}{x}就是等价无穷小 xlimx1
lim ⁡ x → 0 1 x 就 是 等 价 无 穷 大 \lim_{x \to 0}\frac{1}{x}就是等价无穷大 x0limx1
高、低、同、等价、阶数
以 lim ⁡ α ( x ) β ( x ) 为 例 以\lim\frac{α_{(x)}}{β{(x)}}为例 limβ(x)α(x)
1、等阶无穷小:比值为1
2、低阶无穷小:比值为 ∞ \infty
3、高阶无穷小:比值为0
4、同价无穷小:比值为常数(c)

常用等价无穷小替换

eg:
sinx → \rightarrow x
tanx → \rightarrow x
arctanx → \rightarrow x
arcsinx → \rightarrow x
e x → {e^x\rightarrow} exx
ln ⁡ ( x + 1 ) → \ln(x+1)\rightarrow ln(x+1)x
( 1 + x ) α − 1 → (1+x)^α-1\rightarrow (1+x)α1αx
x-arctanx → x 3 3 \rightarrow\frac{x^3}{3} 3x3
( 1 + x ) α n → x a n \sqrt[n]{(1+x)^α}\rightarrow\frac{x^a}{n} n(1+x)α nxa
1 + ψ x n − 1 → ψ x n \sqrt[n]{1+\psi_x}-1\rightarrow\frac{\psi_x}{n} n1+ψx 1nψx
1 − c o s x → x 2 2 1-cosx\rightarrow\frac{x^2}{2} 1cosx2x2
log ⁡ a ( 1 + x ) →   x l n a \log_a(1+x)\rightarrow~\frac{x}{lna} loga(1+x) lnax
a x − 1 → a^x-1\rightarrow ax1xlnx
ln ⁡ ( x + 1 + x 2 ) → \ln(x+\sqrt{1+x^2})\rightarrow ln(x+1+x2 )x
x-sinx → x 3 6 \rightarrow\frac{x^3}{6} 6x3
tanx-x → x 3 3 \rightarrow\frac{x^3}{3} 3x3
arctanx-x → x 3 6 \rightarrow\frac{x^3}{6} 6x3
tanx-sinx x 3 2 \frac{x^3}{2} 2x3
s x 4 − 1 → x 4 s^{\frac{x}{4}}-1\rightarrow\frac{x}{4} s4x14x

比较与运算

洛必达法则、阶的运算、泰勒公式

连续性

连续

间断点

1、第一类间断点
可去间断点:无定义或者 f − ( x ) = f + ( x ) ≠ f ( x ) f_-(x)=f_+(x)\not ={f(x)} f(x)=f+(x)=f(x) (一些分段函数中会用到的)
跳跃间断点:左极限不等于右极限
2、第二类间断点:左右至少有一个间断点不存在
无穷间断点:至少有一个趋于无穷
振荡间断点:

连续函数的性质

1、$\lim_{x to x_0}$存在
2、$f(x_0),f(x)在x_0处有定义$
3、函数值等于极限值(考试时常用)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值