考研复习 求解函数极限的方法全总结

本文总结了考研数学中求解函数极限的各种方法和重要性质,包括基础极限、四则运算法则、夹逼准则、洛必达法则、泰勒公式等。并强调了无穷小量替换、基础极限变换在解题中的应用。考研大纲中的两个重要极限是n→∞lim(1+n1)n=e和x→0limxsinx=1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lim ⁡ x → ∞ \lim\limits_{x\rightarrow\infty} xlim

lim ⁡ x →   x 0 \lim\limits_{x\rightarrow\ x_0} x x0lim

文章目录

1 几种常用的基础极限:

1.1 lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim\limits_{n\rightarrow\infty}(1+\frac{1}{n})^n=e nlim(1+n1)n=e (考研大纲重点:两个重要极限内容)

          引申:
          形如 1 ∞ 1^∞ 1型的极限(底数部分极限为1,指数部分极限为无穷),大部分可化为与e有关的问题来解决

          一般形式:设 f ( x ) → 1 , g ( x ) → 0 f(x)→1,g(x)→0 f(x)1g(x)0
           则 lim ⁡ [ f ( x ) ] g ( x ) = e l i m [ f ( x ) − 1 ] g ( x ) \lim[f(x)]^{g(x)}=e^{lim[f(x)-1]g(x)} lim[f(x)]g(x)=elim[f(x)1]g(x) lim ⁡ [ f ( x ) ] g ( x ) = e l i m [ g ( x ) − 1 ] f ( x ) \lim[f(x)]^{g(x)}=e^{lim[g(x)-1]f(x)} lim[f(x)]g(x)=elim[g(x)1]f(x)

1.1例题

解题:两张图难度递增(习题来自数分简明教程)。
在这里插入图片描述

在这里插入图片描述

 

1.2 lim ⁡ x →   0 s i n x x = 1 \lim\limits_{x\rightarrow\ 0}\frac{sinx}{x}=1 x 0limxsinx=1(考研大纲重点:两个重要极限内容)

在这里插入图片描述
          引申: 一般形式: a ( x ) → 0 , lim ⁡ x →   x 0 s i n f ( x ) f ( x ) = 1 a(x)→0, \lim\limits_{x\rightarrow\ x_0}\frac{sinf(x)}{f(x)}=1 a(x)0x x0limf(x)sinf(x)=1

1.2 例题

在这里插入图片描述

1.3 lim ⁡ x → ∞ q n = 0 \lim\limits_{x\rightarrow\infty} q^n=0 xlimqn=0         ∣ q ∣ < 1 |q|<1 q<1

          引申:
           l o g a n ≪ n k ≪ c n ≪ n n \boldsymbol{log_an\ll n^k\ll c^n\ll n^n} logannkcnnn     ( a > 0 , k > 0 , c > 1 ) \boldsymbol{(a>0,k>0,c>1)} (a>0,k>0,c>1)

          即当 n → ∞ n→∞ n时, l o g a n n k , n k c n , c n n ! , n ! n n \frac{log_an}{n^k},\frac{n^k}{c^n},\frac{c^n}{n!},\frac{n!}{n^n} nklogan,cnnk,n!cn,nnn!都以0为极限,也即这些比式都是无穷小量。

          换句话说,分母趋于 ∞ ∞ 的速度远远快于分子

          记住上述不等式,可以求有关比式的极限,只要后面一项做前面一项的分母,则以0为极限

 

1.4 lim ⁡ x → ∞ a n = 1 \lim\limits_{x\rightarrow\infty}\sqrt [n]{a}=1 xlimna =1         a > 0 a>0 a>0

          引申:
          当 n → ∞ n→∞ n时, a n , n n , n k n \boldsymbol{\sqrt[n]{a},\sqrt[n]{n},\sqrt[n]{n^k}} na ,nn ,nnk      ( a > 0 , k > 0 ) (a>0,k>0) (a>0,k>0) 均以1为极限。

          然而当n次根式的内部继续增大时,结果将发生质变:

           lim ⁡ n → ∞ c n n = c ; \lim\limits_{n\rightarrow\infty}\sqrt[n]{c^n}=c; nlimncn =c;          lim ⁡ n → ∞ n ! n = ∞ ; \lim\limits_{n\rightarrow\infty}\sqrt[n]{n!}=∞; nlimnn! =;          lim ⁡ n → ∞ n n n = lim ⁡ n → ∞ n = ∞ ; \lim\limits_{n\rightarrow\infty}\sqrt[n]{n^n}=\lim\limits_{n\rightarrow\infty}n=∞; nlimnnn =nlimn=;

 

1.5 若 lim ⁡ n → ∞ a n = a \lim\limits_{n\rightarrow\infty}a_n=a nliman=a,则 lim ⁡ x → ∞ a n = a , 则 lim ⁡ x → ∞ 1 n ( a 1 + a 2 + . . . + a n ) = a \boldsymbol{\lim\limits_{x\rightarrow\infty}a_n=a,则\lim\limits_{x\rightarrow\infty}\frac{1}{n}(a1+a2+...+an)=a} xliman=axlim

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值