专转本微分方程

变量可分离方程

变量可分离方程

齐次方程

  1. 将 方 程 化 为 d y d x = φ ( y x ) 将方程化为\frac{dy}{dx}=\varphi(\frac{y}{x}) dxdy=φ(xy)
  2. 换 元 , 令 u = y x , 则 y = x u , y ′ = u + x u ′ , 就 是 d y d x = u + x d y d x , 将 u = y x 、 d y d x = u + x d y d x 带 回 方 程 d y d x = φ ( y x ) 换元,令u=\frac{y}{x},则y=xu,y'=u+xu',就是\frac{dy}{dx}=u+x\frac{dy}{dx},将u=\frac{y}{x}、\frac{dy}{dx}=u+x\frac{dy}{dx}带回方程\frac{dy}{dx}=\varphi(\frac{y}{x}) u=xy,y=xu,y=u+xu,dxdy=u+xdxdyu=xydxdy=u+xdxdydxdy=φ(xy)
  3. 分 离 变 量 , 就 是 x d y d x = u 分离变量,就是x\frac{dy}{dx}=u xdxdy=u
习题

齐次方程

一阶线性非齐次方程

y’+P(x)y=Q(x)
y = e ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + c ] 主 要 就 是 这 个 公 式 y = e^{\int P(x)dx}[\int Q(x)e^{\int P(x)dx}dx+c]主要就是这个公式 y=eP(x)dx[Q(x)eP(x)dxdx+c]
在这里插入图片描述

二阶常系数微分方程

二阶常系数线性齐次方程ay’’+by’+cy=0

这个根就是特征方程和特征根

有两个不相等实数根 r 1 ≠ r 2 r_1\not =r_2 r1=r2 y = c 1 e r 1 x + c 2 e r 2 x y = c_1e^{r_1x}+c_2e^{r_2x} y=c1er1x+c2er2x
有两个相等实数根 r 1 = r 2 r_1 =r_2 r1=r2 y = ( c 1 + c 2 x ) e r 1 x y = (c_1+c_2x)e^{r_1x} y=(c1+c2x)er1x
有两个复根 r 1 , 2 = α ± β i r_{1,2}=α\pm βi r1,2=α±βi y = e a x ( c 1 c o s β + c 2 s i n β ) y =e^{ax}(c_1cosβ+c_2sinβ) y=eax(c1cosβ+c2sinβ)
习题

在这里插入图片描述

二阶常系数线性非齐次方程 a y ′ ′ + b y ′ + c y = f ( x ) ay''+by'+cy=f(x) ay+by+cy=f(x)

这种的关键点在于y*的特解设法
一般而言这个 y ∗ = x k + Q ( x ) e a x y^*=x^k+Q(x)e^{ax} y=xk+Q(x)eax
k的值在于α同m,n是否相等,全等就是二重特征根,一个就是单特征根,没有就不是特征根
α同原方程一致
Q(x)取决于原方程是一次函数,还是二次函数以及常数
在这里插入图片描述

已知特解求通解(去年和前年都考过了)

己 知 函 数 y = e x 和 y = e − 2 x 的 二 阶 常 系 数 线 性 微 分 方 程 y ′ + p y ′ + q y = e x 两 个 解 , 试 确 定 p , q 的 值 , 并 求 微 分 方 程 y ′ + p y ′ + q y = e x 的 通 解 。 己知函数y=e^x和y=e^{-2x}的二阶常系数线性微分方程y'+py'+qy = e^x两个解,试确定p,q的值,并求微分方程y'+py'+qy =e^x的通解。 y=exy=e2x线y+py+qy=ex,p,qy+py+qy=ex

在这里插入图片描述

微分方程得几何应用

求一过点(1,-1)的曲线,使其上任一点处的切线夹于两坐标轴向的线段被
切点平分.
=y’(X-X),
在曲线上任取一点p(x,y),则p点处的切线方程为 Y ‾ \overline{Y} Y-y=y’(X-x)
令Y=0,得切线在X轴上的截距X=x- y y ′ \frac{y}{y'} yy
令X=0,得切线在Y轴上截距Y=y-xy’,
依 题 意 有 f ( x , y ) = { x = X + 0 2 = x 2 − y 2 y ′ ( x , y ) ≠ 0 y = Y + 0 2 = Y 2 − x y ′ 2         x = 0 即 x y ′ = − y 且 y ( 1 ) = − 1 依题意有f(x,y)= \left\{ \begin{aligned} x =\frac{X+0}{2}=\frac{x}{2}-\frac{y}{2y'} (x,y)\not =0\\ y =\frac{Y+0}{2}=\frac{Y}{2}-\frac{xy'}{2}~~~~~~~ x=0 \end{aligned} \right.即xy'=-y且y(1)=-1 f(x,y)=x=2X+0=2x2yy(x,y)=0y=2Y+0=2Y2xy       x=0xy=yy(1)=1
分离变量两边积分得微分方程通解力lny = -lnx+ Inc → \rightarrow xy=c,由y(1)=-1可得c=-1就是xy=-1
下面是以前我不会的
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值