题意:
东东在老家农村无聊,想种田。农田有 n 块,编号从 1~n。种田要灌溉
众所周知东东是一个魔法师,他可以消耗一定的 MP 在一块田上施展魔法,使得黄河之水天上来。他也可以消耗一定的 MP 在两块田的渠上建立传送门,使得这块田引用那块有水的田的水。 (1<=n<=3e2)
黄河之水天上来的消耗是 Wi,i 是农田编号 (1<=Wi<=1e5)
建立传送门的消耗是 Pij,i、j 是农田编号 (1<= Pij <=1e5, Pij = Pji, Pii =0)
东东为所有的田灌溉的最小消耗
思路:天上会给每块田灌溉,所以会增加一个0号源点,与每块田连接,每块田直接也可连接,构成了一个加权图,所以最小消耗就是找到一个最小生成树。
总结:该题需要从图中抽象出来一个图,最小消耗转化成最小生成树问题。
反思:重构图,增加源点
代码:
#include<iostream>
#include<algorithm>
using namespace std;
int fa[310];
struct data
{
int u,v,val;
bool operator<(data p)
{
return val<p.val;
}
}a[200000];
int find(int x)
{
if(fa[x]==x) return x;
fa[x]=find(fa[x]); return fa[x];
}
bool unite(int x,int y)
{
x=find(x);y=find(y);
if(x==y) return false;
fa[x]=y;return true;
}
int main()
{ int n;cin>>n;
for(int i=1;i<=n;i++)
{
a[i].u=0;a[i].v=i;
cin>>a[i].val;
}int k=n+1;
for(int j=1;j<=n;j++)
{
for(int t=1;t<=n;t++)
{
int num;cin>>num;
if(t<=j) continue;
a[k].u=j;a[k].v=t;a[k].val=num;k++;
}
}
for(int i=0;i<=n;i++)
fa[i]=i;
sort(a+1,a+k);int vval=0;
for(int i=1;i<k;i++)
{
if(unite(a[i].u,a[i].v)) vval=vval+a[i].val;
else continue;
}
cout<<vval;
return 0;
}