文章目录
A - TT 的神秘任务1
题意
这一天,TT 遇到了一个神秘人。
神秘人给了两个数字,分别表示 n 和 k,并要求 TT 给出 k 个奇偶性相同的正整数,使得其和等于 n。
例如 n = 10,k = 3,答案可以为 [4 2 4]。
TT 觉得这个任务太简单了,不愿意做,你能帮他完成吗?
本题是SPJ
输入
第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(1 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 100)。
输出
如果存在这样 k 个数字,则第一行输出 “YES”,第二行输出 k 个数字。
如果不存在,则输出 “NO”。
样例输入
8
10 3
100 4
8 7
97 2
8 8
3 10
5 3
1000000000 9
样例输出
YES
4 2 4
YES
55 5 5 35
NO
NO
YES
1 1 1 1 1 1 1 1
NO
YES
3 1 1
YES
111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111120
思路
该问题需要进行分类讨论:
- 奇数不可以由偶数个数组成,可以由奇数k个奇数构成 1,1,1,,,n-(k-1)
- 偶数可以有偶数k个奇数构成 1,1,1,n-(k-1)
- 偶数也可以由奇数k个偶数构成 2,2,2,,,n-2*(k-1) 这里需要注意2*k>n 否则不够分
代码
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int t,n,k;cin>>t;int num[110];
while(t--)
{
cin>>n>>k;
if((n%2&&k%2==0)||k>n)
{
cout<<"NO"<<endl;
continue;
}
if((n%2&&k%2)||(n%2==0&&k%2==0))
{ //奇数
for(int i=0;i<k;i++)
{
if(i==k-1) num[i]=n-(k-1);
else num[i]=1;
}
}
if(n%2==0&&k%2)
{
if(n<2*k)
{
cout<<"NO"<<endl;
continue;
}
for(int i=0;i<k;i++)
{
if(i==k-1) num[i]=n-2*(k-1);
else num[i]=2;
}
}
cout<<"YES"<<endl;
for(int i=0;i<k;i++)
cout<<num[i]<<" ";
cout<<endl;
} return 0;
}
B - TT 的神秘任务2
题意
在你们的帮助下,TT 轻松地完成了上一个神秘任务。
但是令人没有想到的是,几天后,TT 再次遇到了那个神秘人。
而这一次,神秘人决定加大难度,并许诺 TT,如果能够完成便给他一个奖励。
任务依旧只给了两个数字,分别表示 n 和 k,不过这一次是要求 TT 给出无法被 n 整除的第 k 大的正整数。
例如 n = 3,k = 7,则前 7 个无法被 n 整除的正整数为 [1 2 4 5 7 8 10],答案为 10。
好奇的 TT 想要知道奖励究竟是什么,你能帮帮他吗?
输入
第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(2 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 1e9)。
输出
对于每一组数据,输出无法被 n 整除的第 k 大的正整数。
样例输入
6
3 7
4 12
2 1000000000
7 97
1000000000 1000000000
2 1
样例输出
10
15
1999999999
113
1000000001
1
思路
需要给出无法被 n 整除的第 k 大的正整数。
又因为1n 2n 3n…可以被n整除,所以当x<1n或者在1n-2n 2n-3n…之间,所以这里根据k计算第k大的正整数在哪个位置即可。因为n,k的数据范围很大,所以这里可以用二分查找或者计算数学公式都可。
代码
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{int t;scanf("%d",&t);
while(t--)
{
long long n,k;scanf("%lld%lld",&n,&k);
//cout<<n<<" "<<k<<endl;
if(k<n)
{
cout<<k<<endl;continue;
}
long long m=k/n;
long long l=m,r=1000000000;long long ans=1000000000;
while(l<=r)
{
long long mid=(l+r)/2;
if(mid*n-(mid-1)<=k)
l=mid+1;
else
{
ans=mid;//cout<<ans<<"*"<<endl;
r=mid-1;
}
}
cout<<(ans-1)*n+k-((ans-1)*n-(ans-1))<<endl;
}return 0;
}
C - TT 的奖励
题意
输入
多组样例。每组样例输入一个 m (0 < m < 100000),表示有 m 只猫咪。
在接下来的 m 行中,每行有两个整数 a b (0 < b < 100000),表示在第 b 秒的时候有一只猫咪掉落在 a 点上。
注意,同一个点上同一秒可能掉落多只猫咪。m = 0 时输入结束。
输出
输出一个整数 x,表示 TT 可能接住的最多的猫咪数。
样例输入
6
5 1
4 1
6 1
7 2
7 2
8 3
0
样例输出
4
思路
因为每一秒的每一个状态的前一个状态都是可以确定的,所以可以用动规去求解这道题。
- 状态定义
dp[i][j]表示第j秒在i位置收获的猫咪数。 - 转移方程
dp[i][j]=max(dp[i][j-1],dp[i-1][j-1],dp[i+1][j-1])+vis[i][j]
总结
动规思想即小问题解->大问题解
代码
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define ssize 100020
int vis[15][ssize];int dp[15][ssize];
int main()
{ int m;
while(cin>>m)
{
if(m==0)break; memset(vis,0,sizeof(vis));int maxt=0;
for(int i=1;i<=m;i++)
{
int a,b;cin>>a>>b;maxt=max(maxt,b);
vis[a][b]++;
}
memset(dp,0,sizeof(dp));
dp[4][1]=vis[4][1];dp[5][1]=vis[5][1];dp[6][1]=vis[6][1];
for(int i=2;i<=maxt;i++)
{
for(int j=0;j<=10;j++)
{
if(j==0)
dp[j][i]=max(dp[j][i-1],dp[j+1][i-1])+vis[j][i];
else if(j==10)
dp[j][i]=max(dp[j][i-1],dp[j-1][i-1])+vis[j][i];
else
dp[j][i]=max(dp[j][i-1],max(dp[j-1][i-1],dp[j+1][i-1]))+vis[j][i];
}
}int mmmax=0;
for(int i=0;i<=10;i++)
mmmax=max(mmmax,dp[i][maxt]);
cout<<mmmax<<endl;
}return 0;
}
树形DP-----TT的苹果树
题意
在大家的三连助攻下,TT 一举获得了超级多的猫咪,因此决定开一间猫咖,将快乐与大家一同分享。并且在开业的那一天,为了纪念这个日子,TT 在猫咖门口种了一棵苹果树。
一年后,苹果熟了,到了该摘苹果的日子了。
已知树上共有 N 个节点,每个节点对应一个快乐值为 w[i] 的苹果,为了可持续发展,TT 要求摘了某个苹果后,不能摘它父节点处的苹果。
TT 想要令快乐值总和尽可能地大,你们能帮帮他吗?
输入
结点按 1~N 编号。
第一行为 N (1 ≤ N ≤ 6000) ,代表结点个数。
接下来 N 行分别代表每个结点上苹果的快乐值 w[i](-128 ≤ w[i] ≤ 127)。
接下来 N-1 行,每行两个数 L K,代表 K 是 L 的一个父节点。
输入有多组,以 0 0 结束。
输出
每组数据输出一个整数,代表所选苹果快乐值总和的最大值。
样例输入
7
1
1
1
1
1
1
1
1 3
7 4
2 3
4 5
6 4
3 5
0 0
样例输出
5
思路
• 定义状态:
• 定义 f[i][0/1] 表示以 i 为节点的子树所能得到的最大的气氛值。
• f[i][0] 表示以 i 为子树且未选择 i 号节点;
• f[i][1] 表示以 i 为子树且选择了 i 号节点
• 最终答案就是 max(f[root][0], f[root][1])
• 状态转移过程
• 不选取父节点,孩子节点可以参加,也可以不参加。
• 选取父节点,孩子节点只能不参加。
• 枚举量x为当前节点i到能直接到达的所有的子节点。
总结
树形DP,定义状态,设定状态转移方程,计算结果
代码
#include<iostream>
#include<vector>
#include<cstring>
# define inf 100000000
using namespace std;
vector<int>ve[6010];
int w[6010];int fa[6010];int f[6010][3];
int solve(int root,bool flag)
{ if(f[root][flag]!=inf)
return f[root][flag];
if(flag==0)
{
int ans=0;
for(int i=0;i<ve[root].size();i++)
{
if(ve[root][i]!=fa[root])
{ f[ve[root][i]][1]=solve(ve[root][i],1);
f[ve[root][i]][0]=solve(ve[root][i],0);
ans=ans+max(f[ve[root][i]][1],f[ve[root][i]][0]);
}
}
return f[root][0]=ans;
}
else{
int ans=0;
for(int i=0;i<ve[root].size();i++)
{
if(ve[root][i]!=fa[root])
{ f[ve[root][i]][0]=solve(ve[root][i],0);
ans=ans+f[ve[root][i]][0];
}
}return f[root][1]=ans+w[root];
// return max(f[root][1],f[root][0]);
}
}
int main()
{
int n;
while(cin>>n)
{
if(n==0) break;
for(int i=0;i<6010;i++)
ve[i].clear();
memset(w,0,sizeof(w));
for(int i=0;i<6010;i++)
{
for(int j=0;j<3;j++)
f[i][j]=inf;
}
for(int i=1;i<=n;i++)
cin>>w[i];//cout<<"**"<<endl;
for(int i=1;i<n;i++)
{
int a,b;cin>>a>>b;
fa[a]=b;
ve[a].push_back(b);
ve[b].push_back(a);
}int root;
for(int i=1;i<=n;i++)
if(fa[i]==0) root=i;
int res=max(solve(root,1),solve(root,0));
cout<<res<<endl;
}
}
E-TT的神秘任务
题意
TT 猫咖的生意越来越红火,人越来越多,也越来越拥挤。
为了解决这个问题,TT 决定扩大营业规模,但猫从哪里来呢?
TT 第一时间想到了神秘人,想要再次通过完成任务的方式获得猫咪。
而这一次,神秘人决定加大难度。
给定一个环,A[1], A[2], A[3], … , A[n],其中 A[1] 的左边是 A[n]。要求从环上找出一段长度不超过 K 的连续序列,使其和最大。
这一次,TT 陷入了沉思,他需要你们的帮助。
输入
第一行一个整数 T,表示数据组数,不超过 100。
每组数据第一行给定两个整数 N K。(1 ≤ N ≤ 100000, 1 ≤ K ≤ N)
接下来一行,给出 N 个整数。(-1000 ≤ A[i] ≤ 1000)。
输出
对于每一组数据,输出满足条件的最大连续和以及起始位置和终止位置。
如果有多个结果,输出起始位置最小的,如果还是有多组结果,输出长度最短的。
样例输入
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
样例输出
7 1 3
7 1 3
7 6 2
-1 1 1