用户画像第四章(企业级360°用户画像_标签开发_挖掘标签_ 客户价值模型-RFM)

RFM模型是衡量客户价值的重要工具,用于回答关键问题如最佳客户、潜在流失客户等。它包括最近一次消费时间(R)、消费频率(F)和消费金额(M)三个指标。通过对这三个指标的归一化和评分,结合业务规则,可以对用户进行聚类分析,进而制定个性化营销策略。K-Means算法常用于此类聚类任务,帮助确定用户群体并分配标签。
摘要由CSDN通过智能技术生成

客户价值模型-RFM
1.RFM模型引入
比如电商网站要做一次营销活动,需要针对不同价值的客户群体进行分群,对于高价值的用户推荐手表,珠宝等高端商品,对于低价值用户推荐打折促销的廉价商品,当然还有以下这些问题都是需要考虑的:
1.谁是我的最佳客户?
2.谁即将要成为流失客户?
3.谁将有潜力成为有价值的客户
4.哪些客户能够留存?
5.哪些客户会对你目前对活动有所反应?
那么最终的问题是如何对客户进行分群,即如何建立客户的价值模型呢?
在传统企业和电商众多的客户细分模型中,RFM模型是被广泛提到和使用的。
RFM模型是衡量当前用户价值和客户潜在价值的重要工具和手段。
==RFM是Rencency(最近一次消费),Frequency(消费频率)、Monetary(消费金额),三个指标首字母组合,==如图所示:
在这里插入图片描述
一般情况下RFM模型可以说明下列几个事实:
1.最近购买的时间越近,用户对产品促销互动越大
2.客户购买的频率越高,客户就品牌的满意度就越大
3.货币价值将高消费客户和低消费客户区分开来 。
如图所示,根据RFM模型,就可以统计在某一段时间内,用户最近的消费间隔,消费次数和消费金额,再根据使用k-means算法对用户进行聚类分群
注意一点,不仅仅可以局限于这三个数据字段,还可以根据业务需求,加入其他字段,进行调整模型。
在这里插入图片描述
我们可以根据RFM模型计算出所有用户的RFM值形成一个二维表:
userid, R值, F值, M值
1 2019-11-01 5 10000
2 2019-10-01 4 800
对于以上数据的量纲不一致(单位不统一),所以要对数据进行归一化
如何归一化?—需要自定义归一化的规则!即建立一个评分标准?
如何建立评分标准?----根据运营/产品的经验,做一个标准
R: 1-3天=5分,4-6天=4分,7-9天=3分,10-15天=2分,大于16天=1分
F: ≥200=5分,150-199=4分,100-149=3分,50-99=2分,1-49=1分
M: ≥20w=5分,10-19w=4分,5-9w=3分,1-4w=2分,<1w=1分
根据上面的打分规则就可以对数据进行自定义的归一化,得到如下类似结果:
userid, R值, F值, M值
1 5 1 2
2 1 1 1
那么现在数据已经归一化了,如何对数据进行分类?–肯定不能简单的将数据直接丢到三维坐标系,因为坐标系的原点不好确定,且三维坐标系只能分为8类
所以应该使用算法进行分类(聚类)–让算法自动学习用户之间的相似度,然后相似度高的用户,自动聚成一类,最后完成聚类的划分
计算流程
首先对所有用户的最近一次消费时间/总共消费次数/总共消费金额进行统计
再进行归一化(运营/产品提供的打分规则)
再使用算法进行聚类(K-Means)
根据聚类结果给用户打Tag(标签)

2.1.1.RFM详解
2.1.1.1.R值:最近一次消费(Recency)
消费指的是客户在店铺消费最近一次和上一次的时间间隔,理论上R值越小的客户是价值越高的客户,即对店铺的回购几次最有可能产生回应。目前网购便利,顾客已经有了更多的购买选择和更低的购买成本,去除地域的限制因素,客户非常容易流失,因此CRM操盘手想要提高回购率和留存率,需要时刻警惕R值。
如下图,某零食网店用户最近一次消费R值分布图:
在这里插入图片描述
户R值呈规律性的“波浪形”分布,时间越长,波浪越小;
2、最近一年内用户占比50%(真的很巧);
数据分析:这个数据根据向行业内专业人员请教,已经是比较理想了的。说明每引入2个客户,就有一位用户在持续购买。说明店铺复购做的比较好。
2.1.1.2.F值:消费频率(Frequency)
消费频率是客户在固定时间内的购买次数(一般是1年)。但是如果实操中实际店铺由于受品类宽度的原因,比如卖3C产品,耐用品等即使是忠实粉丝用户也很难在1年内购买多次。所以,有些店铺在运营RFM模型时,会把F值的时间范围去掉,替换成累计购买次数。
如下图,某零食网店用户购买频次图(如1个客户在1天内购买多笔订单,则自动合并为1笔订单):
在这里插入图片描述
1、购买1次(新客户)占比为65.5%,产生重复购买(老客户)的占比为34.4%;
2、购买3次及以上(成熟客户)的占比为17%,购买5次及以上(忠实客户)的占比为6%。
数据分析:影响复购的核心因素是商品,因此复购不适合做跨类目比较。比如食品类目和美妆类目:食品是属于“半标品”,产品的标品化程度越高,客户背叛的难度就越小,越难形成忠实用户;但是相对美妆,食品又属于易耗品,消耗周期短,购买频率高,相对容易产生重复购买,因此跨类目复购并不具有可比性。
2.1.1.3.M值:消费金额(Monetary)
M值是RFM模型中相对于R值和F值最难使用,但最具有价值的指标。大家熟知的“二八定律”(又名“帕雷托法则”)曾作出过这样的解释:公司80%的收入来自于20%的用户。
这个数据我在自己所从事的公司总都得到过验证!可能有些店铺不会那么精确,一般也会在30%客户贡献70%收入,或者40%贡献60%收入。
理论上M值和F值是一样的,都带有时间范围,指的是一段时间(通常是1年)内的消费金额,在工作中我认为对于一般店铺的类目而言,产品的价格带都是比较单一的,比如:同一品牌美妆类,价格浮动范围基本在某个特定消费群的可接受范围内,加上单一品类购买频次不高,所以对于一般店铺而言,M值对客户细分的作用相对较弱。
所以我认为用店铺的累计购买金额和平均客单价替代传统的M值能更好的体现客户消费金额的差异。
教大家一个特别简单的累积金额划分方法:将1/2的客单价作为累积消费金额的分段,比如客单价是300元,则按照150元进行累计消费金额分段,得出十个分段。
现以国内某知名化妆品店铺举例,店铺平均客单为160元,因此以80元作为间隔将累积消费金额分段,从表中可以很明显发现,累计消费160元以下用户占比为65.5%(近2/3),贡献的店铺收入比例只占31.6%(近1/3),具体如下:
在这里插入图片描述
2.1.2.基于RFM模型的实践应用
主要有两种方法来分析RFM模型的结果:用基于RFM模型的划分标准来进行客户细分,用基于RFM模型的客户评分来进行客户细分。
2.1.2.1.基于RFM模型进行客户细分
CRM实操时可以选择RFM模型中的1-3个指标进行客户细分,如下表所示。切记细分指标需要在自己可操控的合理范围内,并非越多越好,一旦用户细分群组过多,一来会给自己的营销方案执行带来较大的难度,而来可能会遗漏用户群或者对同个用户造成多次打扰。
最终选择多少个指标有两个参考标准:店铺的客户基数,店铺的商品和客户结构。
在这里插入图片描述
店铺的客户基数:在店铺客户一定的情况下选择的维度越多,细分出来每一组的用户越少。对于店铺基数不大(5万以下客户数)的店铺而言,选择1-2个维度进行细分即可。对于客户超过50万的大卖家而言可以选择2-3个指标。
店铺的商品和客户结构:如果在店铺的商品层次比较单一,客单价差异幅度不大的情况下,购买频次(F值)和消费金额(M值)高度相关的情况下,可以只选择比较容易操作的购买频次(F值)代替消费金额(M值)。对于刚刚开店还没形成客户粘性的店铺,则可以放弃购买频次(F值),直接用最后一次消费(R值)或者消费金额(M值)。
2.1.2.2.通过RFM模型评分后输出目标用户
除了直接用RFM模型对用户进行分组之外,还有一种常见的方法是利用RFM模型的三个属性对客户进行打分,通过打分确定每个用户的质量,最终筛选出自己的目标用户。
RFM模型评分主要有三个部分:
1、确定RFM三个指标的分段和每个分段的分值;
2、计算每个客户RFM三个指标的得分;
3、计算每个客户的总得分,并且根据总得分筛选出优质的客户
比如,实操的过程中一般每个指标分为3-5段,其中R值可以根据开店以来的时间和产品的回购周期来判定,F值根据现有店铺的平均购买频次,M值可参考上文客单价的分段指标。
举个例子:
在这里插入图片描述
确认RFM的分段和对应分段的分值之后,就可以按照用户情况对应进行打分。
这个时候可能有人会对此产生质疑,我如何验证这个给予的分值就是合理的呢?一般使用经验值或用算法模型进行验证。
2、KMeans聚类算法详解–慢点讲
2.2.1.算法原理

http://shabal.in/visuals/kmeans/3.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
计算步骤
选择 K 个点作为初始聚类中心
计算其他的点到中心点的距离, 进行聚类, 使用欧式距离
重新计算每个聚类的中心点, 再次聚类
直到中心点不再变化, 或者达到迭代次数
在这里插入图片描述
在这里插入图片描述
2.2.2.快速体验
2.2.2.1.数据集
IRIS数据集由Fisher在1936年整理的一个经典数据集,在统计学习和机器学习领域都经常被用作示例。
数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条数据包含4个特征,都是浮点数,单位为厘米
Sepal.Length(花萼长度)
Sepal.Width(花萼宽度)
Petal.Length(花瓣长度)
Petal.Width(花瓣宽度))
目标值为鸢尾花的分类:
Iris Setosa(山鸢尾)1
Iris Versicolour(杂色鸢尾)2
Iris Virginica(维吉尼亚鸢尾)3
在这里插入图片描述
在这里插入图片描述

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris
https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html#sphx-glr-auto-examples-cluster-plot-cluster-iris-py

在这里插入图片描述
2.2.2.2.代码演示:

import org.apache.spark.ml.clustering.{
   KMeans, KMeansModel}
import org.apache.spark.ml.feature.{
   MinMaxScaler, MinMaxScalerModel}
import org.apache.spark.sql.{
   DataFrame, SparkSession}

object Iris {
   

  def main(args: Array[String]): Unit = {
   

    //创建sparksession
    val spark: SparkSession = SparkSession.builder().master("local").appName("Iris").getOrCreate()

    //读取数据
    val irisDF: DataFrame = spark.read.format("libsvm")
      .load("file:///F:\\传智播客\\传智专修学院\\第二学期\\34\\08-项目2\\用户画像2\\第三阶段\\挖掘型标签\\数据集\\iris_kmeans.txt")
    irisDF.show(false)

    //数据归一化
    //把数据映射到0~1范围之内处理,更加便捷快速
    //MinMaxScaler  把有量纲表达式变成无量纲表达式,便于不同单位或量级的指标能够进行比较和加权。
    //x' = (x - X_min) / (X_max - X_min)
    val model: MinMaxScalerModel = new MinMaxScaler().setInputCol("features").setOutputCol("featuresOut").fit(irisDF)

    val scalerDatas: DataFrame = model.transform(irisDF)
    scalerDatas.show(false)
   
    //训练

    val KMM: KMeansModel = new KMeans()
      .setK(3)
      .setMaxIter(10)
      .setSeed(10)
      .setFeaturesCol("featuresOut").setPredictionCol("result").fit(scalerDatas)
    val FD: DataFrame = KMM.transform(scalerDatas)
    FD.show(false)

    FD.groupBy("label","result").count().show(false)
  }
}

随机种子:

public static void main(String[] args){
   
    Random rnd = new Random();
    rnd.setSeed(10);//用于设置种子。
    rnd.nextInt();// 用于产生随机数。
    rnd.nextInt(10); // 产生(0-9)数字。
    System.out.println(rnd.nextInt());
}

RFM标签计算:


import cn.itcast.up.base.BaseModel2
import org.apache.spark.ml.clustering.{
   KMeans, KMeansModel}
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql._

import scala.collection.immutable


/**
  * Author itcast
  * Desc 客户价值模型-RFM:
  * Rencency:最近一次消费,最后一次订单距今时间
  * Frequency:消费频率,订单总数量
  * Monetary:消费金额,订单总金额
  */
object RFMModel extends BaseModel2{
   

  def main(args: Array[String]): Unit = {
   
    exec()
  }

  /**
    * 获取标签id(即模型id,该方法应该在编写不同模型时进行实现)
    * @return
    */
  override def getTagID(): Int = 37

  /**
    * 开始计算
    * inType=HBase##zkHosts=192.168.10.20##zkPort=2181##
    * hbaseTable=tbl_orders##family=detail##selectFields=memberId,orderSn,orderAmount,finishTime
    * @param fiveDF  MySQL中的5级规则 id,rule
    * @param hbaseDF 根据selectFields查询出来的HBase中的数据
    * @return userid,tagIds
    */
  override def compute(fiveDF: DataFrame, hbaseDF: DataFrame): DataFrame = {
   
    //fiveDF.show()
    //fiveDF.printSchema()

    //hbaseDF.show(10)
    //hbaseDF.printSchema()

    /*
+---+----+
| id|rule|
+---+----+
| 38|   1|
| 39|   2|
| 40|   3|
| 41|   4|
| 42|   5|
| 43|   6|
| 44|   7|
+---+----+

root
 |-- id: long (nullable = false)
 |-- rule: string (nullable = true)

+---------+-------------------+-----------+----------+
| memberId|            orderSn|orderAmount|finishTime|
+---------+-------------------+-----------+----------+
| 
  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值