数组元素的排序算法
排序的定义:
假设含有n个记录的序列为{R1,R2,…,Rn},其相应的关键字序列为{K1,K2,…,Kn}。将这些记录重新排序为{Ri1,Ri2,…,Rin},使得相应的关键字值满足条Ki1<=Ki2<=…<=Kin,这样的一种操作称为排序。
- 通常来说,排序的目的是快速查找。
衡量排序算法的优劣:
1.时间复杂度:分析关键字的比较次数和记录的移动次数
2.空间复杂度:分析排序算法中需要多少辅助内存
3.稳定性:若两个记录A和B的关键字值相等,但排序后A、B的先后次序保持不变,则称这种排序算法是稳定的。
排序算法分类:内部排序和外部排序。
-
内部排序:整个排序过程不需要借助于外部存储器(如磁盘等),所有排序操作都在内存中完成。
-
外部排序:参与排序的数据非常多,数据量非常大,计算机无法把整个排序过程放在内存中完成,必须借助于外部存储器(如磁盘)。外部排序最常见的是多路归并排序。可以认为外部排序是由多次内部排序组成。
十大内部排序算法
- 选择排序
直接选择排序、堆排序 - 交换排序
冒泡排序、快速排序(这两个要求:熟悉) - 插入排序
直接插入排序、折半插入排序、Shell排序 - 归并排序
- 桶式排序
- 基数排序
算法的五大特征
输入(Input) | 有0个或多个输入数据,这些输入必须有清楚的描述和定义 |
---|---|
输出(Output) | 至少有1个或多个输出结果,不可以没有输出结果 |
有穷性 (有限性,Finiteness) | 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成 |
确定性(明确性,Definiteness) | 算法中的每一步都有确定的含义,不会出现二义性 |
可行性(有效性,Effectiveness) | 算法的每一步都是清楚且可行的,能让用户用纸笔计算而求出答案 |
说明:满足确定性的算法也称为:确定性算法。现在人们也关注更广泛的概念,例如考虑各种非确定性的算法,如并行算法、概率算法等。另外,人们也关注并不要求终止的计算描述,这种描述有时被称为过程(procedure)。
冒泡排序
介绍:冒泡排序的原理非常简单,它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
排序思想:
1.比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
3.针对所有的元素重复以上的步骤,除了最后一个。
4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较为止。
public class BubbleSortTest {
public static void main(String[] args) {
int[] arr = new int[]{43,32,76,-98,0,64,33,-21,32,99};
for(int i = 0;i < arr.length - 1;i++){
for(int j = 0;j < arr.length - 1 - i;j++){
if(arr[j] > arr[j + 1]){
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
for(int i = 0;i < arr.length;i++){
System.out.print(arr[i] + "\t");
}
}
}
练习一:
使用冒泡排序,实现如下的数组从小到大排序。
int[] arr = new int[]{34,5,22,-98,6,-76,0,-3};
class BubbleSortTest {
public static void main(String[] args) {
int[] arr = new int[] { 34, 5, 22, -98, 6, -76, 0, -3 };
System.out.print("原先的数组:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + "\t");
}
System.out.println();
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
System.out.print("经冒泡后的:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + "\t");
}
}
}
快排时间复杂度:O(nlogn)
冒泡时间复杂度:O(n^2)
堆排序、归并排序
快速排序
介绍:快速排序通常明显比同为O(nlogn)的其他算法更快,因此常被采用,而且快排采用了分治法的思想,所以在很多笔试面试中能经常看到快排的影子。可见掌握快排的重要性。
快速排序(Quick Sort)由图灵奖获得者Tony Hoare发明,被列为20世纪十大算法之一,是迄今为止所有内排序算法中速度最快的一种。冒泡排序的升级版,交换排序的一种。快速排序的时间复杂度为O(nlog(n))。
排序思想:
1. 从数列中挑出一个元素,称为"基准"(pivot),
2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
4. 递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
/**
* 快速排序
* 通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,
* 则分别对这两部分继续进行排序,直到整个序列有序。
*/
public class QuickSort {
private static void swap(int[] data, int i, int j) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
private static void subSort(int[] data, int start, int end) {
if (start < end) {//此处为核心代码,
int base = data[start];
int low = start;
int high = end + 1;
while (true) {
while (low < end && data[++low] - base <= 0)
;
while (high > start && data[--high] - base >= 0)
;
if (low < high) {
swap(data, low, high);
} else {
break;
}
}
swap(data, start, high);
subSort(data, start, high - 1);//方法自己又调用自己了,称为递归调用(递归方法)
subSort(data, high + 1, end);
}
}
public static void quickSort(int[] data){
subSort(data,0,data.length-1);
}
//举例
public static void main(String[] args) {
int[] data = { 9, -16, 30, 23, -30, -49, 25, 21, 30 };
System.out.println("排序之前:\n" + java.util.Arrays.toString(data));
quickSort(data);
System.out.println("排序之后:\n" + java.util.Arrays.toString(data));
}
}
排序算法性能对比
各种内部排序方法性能比较
- 从平均时间而言:快速排序最佳。但在最坏情况下时间性能不如堆排序和归并排序。
- 从算法简单性看:由于直接选择排序、直接插入排序和冒泡排序的算法比较简单,将其认为是简单算法。对于Shell排序、堆排序、快速排序和归并排序算法,其算法比较复杂,认为是复杂排序。
- 从稳定性看:直接插入排序、冒泡排序和归并排序时稳定的;而直接选择排序、快速排序、Shell排序和堆排序是不稳定排序
- 从待排序的记录数n的大小看,n较小时,宜采用简单排序;而n较大时宜采用改进排序。
排序算法的选择
(1)若n较小(如n≤50),可采用直接插入或直接选择排序。
当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插入,应选直接选择排序为宜。
(2)若文件初始状态基本有序(指正序),则应选用直接插入、冒泡或随机的快速排序为宜;
(3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。