给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
提示:
n = height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104
解题方法·1:对每一个height[i],可以作其水平线,找到>=height[i]的两条线,然后算面积,取最大值。代码如下:
class Solution {
public:
int maxArea(vector<int>& height) {
int max_s=0;
int len=height.size();
for(int i=0;i<len;i++)
{
int left=0;
int right=len-1;
while(height[left]<height[i]&&left<len)
{
left++;
}
while(height[right]<height[i]&&right>=0)
{
right--;
}
max_s=max(max_s,(right-left)*height[i]);
}
return max_s;
}
};
解题方法2:贪心和双指针思想,定义两个变量,left=0,right=size-1。每次把值小的那个下标前移,取最大值,代码如下:
class Solution {
public:
int maxArea(vector<int>& height) {
int max_s=0;
int len=height.size();
int left=0,right=len-1;
while(left<right)
{
if(height[left]<=height[right])
{
max_s=max(max_s,(right-left)*height[left]);
left++;
}
else
{
max_s=max(max_s,(right-left)*height[right]);
right--;
}
}
return max_s;
}
};