盛最多水的容器(c++)

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器。

示例 1:
在这里插入图片描述

输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:

输入:height = [1,1]
输出:1
示例 3:

输入:height = [4,3,2,1,4]
输出:16
示例 4:

输入:height = [1,2,1]
输出:2

提示:

n = height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104

解题方法·1:对每一个height[i],可以作其水平线,找到>=height[i]的两条线,然后算面积,取最大值。代码如下:

class Solution {
public:
    int maxArea(vector<int>& height) {
        int max_s=0;
        int len=height.size();
        for(int i=0;i<len;i++)
        {
            int left=0;
            int right=len-1;
            while(height[left]<height[i]&&left<len)
            {
                left++;
            }
            while(height[right]<height[i]&&right>=0)
            {
                right--;
            }
            max_s=max(max_s,(right-left)*height[i]);
        }
        return max_s;
    }
};

解题方法2:贪心和双指针思想,定义两个变量,left=0,right=size-1。每次把值小的那个下标前移,取最大值,代码如下:

class Solution {
public:
    int maxArea(vector<int>& height) {
        int max_s=0;
        int len=height.size();
        int left=0,right=len-1;
        while(left<right)
        {
            if(height[left]<=height[right])
            {
                max_s=max(max_s,(right-left)*height[left]);
                left++;
            }
            else
            {
                max_s=max(max_s,(right-left)*height[right]);
                right--;
            }
        }
        return max_s;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值