ACM数学之求组合数

递推法

  • 根据公式, C a b = C a − 1 b + C a − 1 b − 1 C_a^b=C_{a-1}^{b} + C_{a-1}^{b-1} Cab=Ca1b+Ca1b1
  • 从实际意义理解:在a个苹果里面选b个苹果的方案:,先假设有一个苹果x,如果我们选了x,那么就在剩下的a-1个苹果里面选b-1个,如果不选x,那么就是在a-1个苹果里选b个
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 例题:求组合数1

AC代码

#include <bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof a)
using namespace std; 
typedef long long ll;
const int N = 2e3 + 10, mod = 1e9 + 7;
int c[N][N];
void init()
{
    //c[0][0]=1;
	for(int i=0; i<N; i++)
		for(int j=0; j<=i; j++)
			if(!j) c[i][j]=1;
			else c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;     
		
		
		
}
int main()
{
	init();
    int t;
    cin>>t;
    while(t--)
    {
    	int a,b;
    	scanf("%d%d",&a,&b);
    	printf("%d\n",c[a][b]);
    	
	}
    return 0;
}

通过预处理逆元的方式求组合数

  • 就是 根据定义公式: C a b = a ! ( a − b ) ! ∗ b ! C_{a}^{b} = \frac{a!}{(a-b)!*b!} Cab=(ab)!b!a!,
    我们预处理出阶层f数组和逆元数组inf[i],f[i]=f[i-1]*i%mod,
    inf[i]=inf[i-1]*qmi(i,mod-2)

  • 时间复杂度 O ( n ) O(n) O(n)

  • 例题:组合数2

AC代码

#include <bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof a)
#define ll  long long
using namespace std; 
const int N = 1e5+9 + 10, mod = 1e9 + 7;
ll f[N],inf[N];
int qmi(int x,int k)
{
	int res=1;
	while(k)
	{
		if(k&1) res=1ll*res*x%mod;
		k>>=1;
		x=1ll*x*x%mod;
	}
	return res;
}
void init()
{
   	f[0]=inf[0]=1;
	for(int i=1; i<N; i++)
	{
		f[i]=1ll*f[i-1]*i%mod;
		inf[i]=1ll*inf[i-1]*qmi(i,mod-2)%mod;
	}  		
}
int main()
{
	init();
    int t;
    cin>>t;
    while(t--)
    {
    	int a,b;
    	scanf("%d%d",&a,&b);
    	printf("%lld\n",1ll*f[a]*inf[b]%mod*inf[a-b]%mod);
	}
    return 0;
}

卢卡斯定理求组合数

  • 这里觉得以为大佬写的很不错,就直接放链接了
    大佬博客

  • 时间复杂度: O ( l o g p n ∗ p ) O(log_{p}^{n}*p) O(logpnp), 适用于a,b很大,但是mod(mod<=1e5)很小时求组合数,

AC代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5 + 10;
int mod;
int f[N],inf[N]; 
int qmi(int x,int k)
{
	int res=1;
	while(k)
	{
		if(k&1) res=1ll*res*x%mod;
		k>>=1;
		x=1ll*x*x%mod; 
	 } 
	 return res;
}
int C(int a,int b)
{
	int res=1;
	for(int i=1, j=a; i<=b; i++,j--)
	{
		res=1ll*res*j%mod;
		res=1ll*res*qmi(i,mod-2)%mod;
	}
	return res;
}
int lucas(ll a,ll b)
{
	if(a<mod && b<mod) return C(a,b);
	else return 1ll*C(a%mod,b%mod)*lucas(a/mod,b/mod)%mod;
} 
int main()
{
     
    
     int t;
     cin>>t;
     while(t--)
     {
     	 ll a,b;
     	 cin>>a>>b>>mod;
    
     	 cout<<lucas(a,b)<<endl;
	 }
    return 0;
}

总结

这里记录下自己的学习历程,求组合数时要根据不同的场景选择适当的方式。欢迎大家留言交流

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值