acm 求组合数方法

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u014569598/article/details/38079343

做题需要用到组合数,搜集了一些方法

即C(n,m),第一种拓展欧几里得做的,第二种费马小定理加快速幂(g^(MOD-2)=1/g%MOD,将除法问题转化为乘法),第一种快一点

MOD=1e9+9;

LL fac[N];
void init()
{
    LL i;
    fac[0]=1;
    for (LL i = 1; i < N; i++)
	fac[i] = fac[i - 1] * i % MOD;
}
LL exgcd(LL a, LL b, LL &x, LL &y) {
    if (!b) {x = 1; y = 0; return a;}
    LL d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

LL inv(LL a, LL n) {
    LL x, y;
    exgcd(a, n, x, y);
    return (x + n) % n;
}

LL C(LL n, LL m) {
    return fac[n] * inv(fac[m] * fac[n - m] % MOD, MOD) % MOD;
}



LL da[MAXN];//G++ long long
void init()
{
    int i;
    da[0]=1;
    da[1]=1;
    for(i=2;i<MAXN;i++)
        da[i]=i*da[i-1]%MOD;
}
LL quickmod(LL a,LL b)
{
    LL ans=1;
    while(b)
    {
        if(b&1)
        {
            ans=(ans*a)%MOD;
            b--;
        }
        b/=2;
        a=((a%MOD)*(a%MOD))%MOD;
    }
    return ans;
}
LL C(LL a, LL b)
{
    return (da[a]%MOD)*(quickmod(da[b]*da[a-b]%MOD,MOD-2))%MOD;
}


展开阅读全文

没有更多推荐了,返回首页