并查集与食物链

并查集

1.并查集的基本操作

是用来管理分组情况的数据结构。
可以进行以下操作

  • 并查集初始化
  • 查询两元素是否在同一组
  • 合并两元素所在的组(并查集没有拆开的操作)

举个栗子:

注:

  • 并查集是利用树的结构来实现的,不过并非二叉树,也可能是三叉树、四叉树……
  • 并查集的时间复杂度为阿克曼函数(Ackermann)的反函数,比O(logn)还快

1.初始化

  • 设置一维数组p[]用于判断他们的分组
    在这里插入图片描述
void init(int n) {
	for (int i = 0; i < n; i++) {
		par[i] = i;
		rank[i] = 0;
	}
}

2.查询

  • 如下图:p[2]=5,p[9]=5,而p[5]=5 ,这一组的组名就是5。
  • 在查询两个元素是否为同一组时,需要先求出他们的root也就是这里的5

在这里插入图片描述

int find(int x) {
	int r = x;
	while (r != par[r]) {
		r = par[r];
	}
	return r;
}
bool same(int x, int y) {
	if (find(x) == find(y)) return true;
	else return false;
}

3.合并
在这里插入图片描述

void unit(int x, int y) {
	x = find(x);
	y = find(y);
	if (x == y) return;
    //依据树高对树的优化
	if (rank[x] < rank[y]) par[x] = y;
	else if (rank[x] > rank[y]) par[y] = x;
	else if (rank[x] == rank[y]) {
		par[y] = x;
		rank[x]++;
	}
}

2.优化

1.注意树的高度

  • 在树形结构中经常发生退化现象
  • 因此我们设置rank数组来记录树的高度,以防止出现退化现象

对应有两种情况:

1.rank[6]==rank[7]在这里插入图片描述

2.rank[6]>rank[7]
在这里插入图片描述
2.路径的压缩

  • 如图所示方法可缩短搜索的时间
    在这里插入图片描述

食物链

有N只动物,分别编号为1,2,3……N。所有动物都属于A,B,C中的其中一种。已知A吃B、B吃C、C吃A。按顺序给出下面两种信息共K条。

  • 第一种:x与y属于同一种类
  • 第二种:x吃y

然而这些信息优势会出错。有可能有的信息和之前给的信息矛盾,也有的信息可能给出的x与y不在1,2……N的范围内。求在K条信息中有多少条是不正确的。计算过程中,我们忽视此类的错误信息。

Sample Input:
N=100,K=7
信息有K条:
第一种,x=101,y=1
第二种,x=1,y=2
…… ……

首先确定此题的分类用到并查集
难点:每种动物都有三种类别,如何处理这三种类别和两种关系

那么我们设置一个3*N的一维数组(二维数组也可)

如图:

  • 1与2属于第一种关系,那么将对应连线部分并入同一类
  • 3与4属于第二种关系,将对应部分并入同类

在这里插入图片描述

  • 相反如图所示两种情况,那么说明有信息错误

在这里插入图片描述
在这里插入图片描述

#include"stdio.h"
#include"stdlib.h"
#define MAX 100

//并查集所需数组
int par[MAX], rank[MAX];
int N, K;
//t数组是信息类别,X存储每条信息中的x,Y存储每条信息的y
int t[MAX], X[MAX], Y[MAX];

//并查集相关操作
void init(int n) {
	for (int i = 0; i < n; i++) {
		par[i] = i;
		rank[i] = 0;
	}
}

int find(int x) {
	int r = x;
	while (r != par[r]) {
		r = par[r];
	}
	return r;
}

void unit(int x, int y) {
	x = find(x);
	y = find(y);
	if (x == y) return;

	if (rank[x] < rank[y]) par[x] = y;
	else if (rank[x] > rank[y]) par[y] = x;
	else if (rank[x] == rank[y]) {
		par[y] = x;
		rank[x]++;
	}
}

bool same(int x, int y) {
	if (find(x) == find(y)) return true;
	else return false;
}

void solve() {
	int ans = 0;
	init(3 * N);
	//检测每一条信息
	for (int i = 0; i < K; i++) {
		int x = X[i] - 1;
		int y = Y[i] - 1;
		//第一种信息
		if (t[i] == 1) {
			//当x与y有第二种关系,信息错误
			if (same(x, y + N) || same(x, y + 2 * N))
				ans++;
			//两者无关事,合并对A,B,C三种同时合并
			else {
				unit(x, y);
				unit(x + N, y + N);
				unit(x + 2 * N, y + 2 * N);
			}
		}
		//第二种信息
		if (t[i] == 2) {
			if (same(x, y + N) || same(x, y + 2 * N))
				ans++;
			else {
				unit(x, y + N);
				unit(x + N, y + 2 * N);
				unit(x + 2 * N, y);
			}
		}
	}
	printf("%d\n", ans);
}

int main() {
	scanf_s("%d%d", &N, &K);
	for (int i = 0; i < K; i++) {
		scanf_s("%d", &t[i]);
		scanf_s("%d", &X[i]);
		scanf_s("%d", &Y[i]);
	}
	solve();
	system("pause");
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值