最大流问题
网络中有两台计算机s和t,现在想从s传输数据到t。该网络中一共有N台计算机,其中一些计算机之间连有一条单向的通信电缆,每条通信电缆都有对应的1秒钟内所能传输的最大数据量。问在1秒钟s最多可以传输多少数据到t?
我们设c为每条边的容量,f为每条边的容量,s为源点,t为汇点
Ford-Fulkerson算法
-
利用满足f(e)<c(e)的e或者满足f(e)>0的e对应的反向边rev(e),采用dfs寻找一条s到t的路径。
-
如果不存在满足条件的路径,则结束。否则沿着该路径尽可能地增加流,返回第一步。
残留网络与增广路:
Ford-Fulkerson算法第一步中考虑的e:f(e)<c(e)的e或者满足f(e)>0的e对应的反向边rev(e)对应的图叫做残留网络,残留网络上的s-t路径被称为增广路。
那么上图网络对应求解步骤如下:
- 初始形式:
3. 路径:s>1>3>t
路径最大流量:5
注:反向路径的权值与正向路径的f相等
4. 路径:s>1>2>t
路径最大流量:5
5. 路径:s>3>1>2>t
路径最大流量:1
Ford-Fulkerson算法代码:(图用邻接表表示)
#include<iostream>
#include<cstdlib>
#include<vector>
#include<algorithm>
#define INF 100
#define MAX 100
using namespace std;
struct edge {
int to;
int cap;
//边的反向边的位置
int rev;
};
vector<edge> G[MAX];
bool used[MAX];
void Add_edge(int from, int to, int cap) {
//G[to].size()为rev边在G[to]向量中的位置
edge e = { to, cap, G[to].size() };
edge rev = { from, 0, G[from].size()};
G[from].push_back(e);
G[to].push_back(rev);
}
int dfs(int v, int t, int f) {
if (v == t) return f;
used[v] = 1;
for (int i = 0; i < G[v].size(); i++) {
edge &e = G[v][i];
if (used[e.to] != 1 && e.cap > 0) {
//d为所在路径的最大流
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
//边容量-路径最大流
e.cap -= d;
//反相变+路径最大流
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t) {
int res = 0;
for (;;) {
memset(used, 0, sizeof(used));
int f = dfs(s, t, INF);
if (f == 0) return res;
res += f;
}
}
int main() {
//边数
int en;
int from, to, cap;
cin >> en;
for (int i = 0; i < en; i++) {
cin >> from >> to >> cap;
Add_edge(from, to, cap);
}
cout << max_flow(0, 4) << endl;
system("pause");
}
对应例题中的结果:
Ford-Fulkerson算法可用最小割来证明:
图的割:指的是对于某个顶点集合S被包含于V,从S出发指向S外部的那些边的集合,记做割(S,V/S)。如果有s∈S,t∈V/S,此时的割称为s-t割。
最小割问题:给定网络,为保证没有从s到t的路径,需要删除的边的总量的最小值是多少?
这个图对应的最小割为11,与最大流相同