自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(382)
  • 收藏
  • 关注

原创 【论文阅读】Aggregated Residual Transformations for Deep Neural Networks

ResNeXt

2025-11-30 21:32:35 1087

原创 【论文阅读】Network In Network

我们提出了mlpconv层,其和传统的线性卷积层的比较见Fig1。mlpconv层和传统的线性卷积层都是将局部感受野映射到了输出特征向量。但不同之处在于,mlpconv使用了多层感知器(multilayer perceptron,MLP),其包含多个全连接层和非线性激活函数。而我们提出的方法NIN(Network In Network)的总体结构就是多个mlpconv层的堆叠。

2025-11-30 21:31:10 819

原创 【网络是怎样连接的】第2章:用电信号传输TCP/IP数据——探索协议栈和网卡

我们现在使用的以太网中存在不符合国际标准(IEEE802.3/802.2)的部分。TCP/IP是由TCP和IP两个协议的名字组合而成的,最开始这两个协议是合在一起的。网络包通信技术是20世纪60年代为用计算机进行数据通信而设计出来的。正确。一般情况下,以太网的头部(网络包开头的控制信息)格式并非遵循国际标准(IEEE802.3/802.2),而是遵循一个更古老的规格(以太网第2版,又称DIX规格),相对的,国际标准(IEEE802.3/802.2)的头部格式由于长度太长、效率降低而没有普及。

2025-11-16 15:41:01 844

原创 【论文阅读】SimCC:a Simple Coordinate Classification Perspective for Human Pose Estimation

在2D Human Pose Estimation (HPE)领域中,基于2D heatmap的方法是绝对的主流。尽管基于heatmap的方法取得了很大的成功,但是其存在着严重的,这是由将连续的坐标值映射到离散的二维下采样heatmap上引起的。因为高分辨率的2D heatmap会带来高昂的计算成本,为了降低量化误差,有些研究采用的方法是将二维heatmap降低到一维,然后再提高其分辨率。但为了实现这一目的,网络框架也变得更为复杂,见Fig1。

2025-11-16 15:39:43 852

原创 【论文阅读】Densely Connected Convolutional Networks

CNN已经成为了目标检测领域主要的机器学习方法。最初的只有5层,到发展为19层,直到Highway Networks和才突破100层。随着CNN变得越来越深,出现了一个新的问题:当输入或者梯度在穿过许多层后,其有可能会消失。许多研究都致力于解决这一问题,它们大多采用一个共同的思路:通过short path将前面的层和后面的层连接起来。而我们提出的新框架,为了确保网络中各层之间信息流最大化,直接将所有层(大小一致)相互连接。

2025-11-16 15:38:26 1217

原创 【C++基础】第八十八课:[面向对象程序设计]访问控制与继承

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-11-13 20:31:03 748

原创 【啊哈!算法】第八章:更多精彩算法

博客为参考《啊哈!算法》一书,自己所做的读书笔记。

2025-11-13 20:29:37 1173

原创 【C++基础】第八十七课:[面向对象程序设计]抽象基类

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-11-13 20:28:16 896

原创 【程序是怎样跑起来的】第5章:内存和磁盘的亲密关系

博客为参考《程序是怎样跑起来的》一书,自己所做的读书笔记。

2025-11-02 15:48:11 888

原创 【论文阅读】PERCEIVER IO:A GENERAL ARCHITECTURE FOR STRUCTURED INPUTS & OUTPUTS

Perceiver IO,多模态

2025-11-02 15:45:42 972

原创 【C++基础】第八十六课:[面向对象程序设计]虚函数

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-11-02 15:43:52 766

原创 【OpenCV基础】第四十一课:LBP特征

LBP(Local Binary Patterns,局部二值模式)是一种用来描述图像局部纹理特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。它将图像中的各个像素与其邻域像素值进行比较,将结果保存为二进制数,并将得到的二进制比特串作为中心像素的编码值,也就是LBP特征值。LBP提供了一种衡量像素间邻域关系的特征模式,因此可以有效地提取图像的局部特征,而且由于其计算简单,可用于基于纹理分类的实时应用场景,例如目标检测、人脸识别等。

2025-10-19 21:27:21 872

原创 【C++基础】第八十五课:[面向对象程序设计]定义基类和派生类

public://返回给定数量的书籍的销售总额//派生类负责改写并使用不同的折扣计算算法//对析构函数进行动态绑定private://书籍的ISBN编号protected://代表普通状态下不打折的价格作为继承关系中根节点的类通常都会定义一个虚析构函数。基类通常都应该定义一个虚析构函数,即使该函数不执行任何实际操作也是如此。派生类必须通过使用类派生列表(class derivation list)明确指出它是从哪个(哪些)基类继承而来的。

2025-10-19 21:25:41 733

原创 【Python基础】第四十六课:关联分析

(Association rule learning)是一种在大型数据库中发现变量之间的有趣性关系的方法。它的目的是利用一些有趣性的量度来识别数据库中发现的强规则。基于强规则的概念,Rakesh Agrawal等人引入了关联规则以发现由超市的POS系统记录的大批交易数据中产品之间的规律性。例如,从销售数据中发现的规则{洋葱,土豆}→{汉堡}会表明如果顾客一起买洋葱和土豆,他们也有可能买汉堡的肉。此类信息可以作为做出促销定价或产品植入等营销活动决定的根据。

2025-10-19 21:23:30 838

原创 【C++基础】第八十四课:[面向对象程序设计]OOP:概述

面向对象程序设计基于三个基本概念:数据抽象、继承和动态绑定。在类的系列博文中已经介绍了数据抽象的知识,本系列博文将介绍继承和动态绑定。继承和动态绑定对程序的编写有两方面的影响:一是我们可以更容易地定义与其他类相似但不完全相同的新类;二是在使用这些彼此相似的类编写程序时,我们可以在一定程度上忽略掉它们的区别。在很多程序中都存在着一些相互关联但是有细微差别的概念。例如,书店中不同书籍的定价策略可能不同:有的书籍按原价销售,有的则打折销售。有时,我们给那些购买书籍超过一定数量的顾客打折;

2025-10-06 10:22:42 683

原创 【机器学习基础】第四十六课:[特征选择与稀疏学习]包裹式选择

【机器学习基础】系列博客为参考周志华老师的《机器学习》一书,自己所做的读书笔记。

2025-10-06 10:20:52 655

原创 【C++基础】第八十三课:[重载运算与类型转换]重载、类型转换与运算符

public:private:我们的SmallInt类既定义了向类类型的转换,也定义了从类类型向其他类型的转换。si = 4;//首先将4隐式地转换成SmallInt,然后调用SmallInt::operator=si + 3;//首先将si隐式地转换成int,然后执行整数的加法其他隐式类型转换算术转换),并与其一起使用。因此,我们可以将任何算术类型传递给SmallInt的构造函数。//内置类型转换将double实参转换成int//调用SmallInt(int)构造函数。

2025-10-06 10:19:31 1036

原创 【论文阅读】Histograms of Oriented Gradients for Human Detection

HOG

2025-10-01 12:01:21 963

原创 【网络是怎样连接的】第1章:浏览器生成消息——探索浏览器内部

http://www.nikkeibp.co.jp/中的www代表World Wide Web协议(对通信操作规则所作的定义)。个人也可以申请注册互联网中的域名。浏览器等网络应用程序实际上并不具备网络控制功能。错误。http://www.nikkeibp.co.jp/中的www只是Web服务器上的一种命名。而且,World Wide Web也不是一个协议的名字,而是Web的提出者最早开发的浏览器兼HTML编辑器的名字。正确。

2025-10-01 11:59:16 1045

原创 【论文阅读】nnU-Net:Self-adapting Framework for U-Net-Based Medical Image Segmentation

CNN目前是医学图像分割领域内的主流方法。然而,每个分割的benchmark似乎都需要专门的框架和特定的训练策略才能达到有竞争力的性能表现。这导致很多方法仅在一个或少数几个数据集上验证过,其很难在有限的场景之外达到承诺的性能表现。医学分割十项全能()旨在解决这个问题:这项挑战要求参与者创建一种分割算法,其需要在与人体不同实体相对应的10个数据集上进行泛化测试。这些算法可以动态地适应特定数据集的特性,但仅允许以完全自动的方式这样做。挑战分为两个连续的阶段:1)开发阶段。

2025-10-01 11:57:46 875

原创 【C++基础】第八十二课:[重载运算与类型转换]函数调用运算符

标准库定义了一组表示算术运算符、关系运算符和逻辑运算符的类,每个类分别定义了一个执行命名操作的调用运算符。例如,plus类定义了一个函数调用运算符用于对一对运算对象执行+的操作;modulus类定义了一个调用运算符执行二元的%操作;equal_to类执行==,等等。这些类都被定义成模板的形式,我们可以为其指定具体的应用类型,这里的类型即调用运算符的形参类型。例如,令string加法运算符作用于string对象;plus<int>的运算对象是int;//可执行int加法的函数对。

2025-09-29 19:04:33 548

原创 【论文阅读】SURF:Speeded Up Robust Features

SURF,U-SURF

2025-09-29 19:02:44 758

原创 【啊哈!算法】第七章:神奇的树

博客为参考《啊哈!算法》一书,自己所做的读书笔记。

2025-09-29 19:00:34 580

原创 【C++基础】第八十一课:[重载运算与类型转换]成员访问运算符

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-09-27 10:56:31 258

原创 【OpenCV基础】第四十课:HOG特征检测

👉。

2025-09-27 10:55:22 810

原创 【C++基础】第八十课:[重载运算与类型转换]递增和递减运算符

我们在StrBlobPtr类public://递增和递减运算符//前置运算符//其他成员和之前的版本一致为了与内置版本保持一致,前置运算符应该返回递增或递减后对象的引用。//前置版本:返回递增/递减对象的引用//如果curr已经指向了容器的尾后位置,则无法递增它++curr;//将curr在当前状态下向前移动一个元素//如果curr是0,则继续递减它将产生一个无效下标--curr;//将curr在当前状态下向后移动一个元素。

2025-09-27 10:54:06 296

原创 【论文阅读】V-Net:Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

CNN浅层可以捕捉局部信息,深层可以捕捉全局信息。本文的目标是基于MRI数据分割出前列腺。这项任务非常具有挑战性,因为前列腺在不同扫描中的外观差异性非常大。此外,MRI图像质量也会影响分割效果。我们提出一种端到端的全卷积网络来处理MRI数据。

2025-09-21 15:40:14 1039

原创 【程序是怎样跑起来的】第4章:熟练使用有棱有角的内存

博客为参考《程序是怎样跑起来的》一书,自己所做的读书笔记。

2025-09-21 15:39:02 621

原创 【C++基础】第七十九课:[重载运算与类型转换]下标运算符

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-09-21 15:36:58 324

原创 【论文阅读】3D U-Net:Learning Dense Volumetric Segmentation from Sparse Annotation

3D U-Net

2025-09-17 19:09:53 1341

原创 【论文阅读】3D Convolutional Neural Networks for Human Action Recognition

3D卷积

2025-09-17 19:08:34 673

原创 【Python基础】第四十五课:使用SVD压缩图片

可见,SVD压缩图片属于有损压缩。

2025-09-17 19:06:55 452

原创 【C++基础】第七十八课:[重载运算与类型转换]赋值运算符

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-09-14 18:18:50 398

原创 【机器学习基础】第四十五课:[特征选择与稀疏学习]过滤式选择

【机器学习基础】系列博客为参考周志华老师的《机器学习》一书,自己所做的读书笔记。

2025-09-14 18:16:56 1047

原创 【C++基础】第七十七课:[重载运算与类型转换]算术和关系运算符

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-09-14 18:13:23 579

原创 【啊哈!算法】第六章:最短路径

博客为参考《啊哈!算法》一书,自己所做的读书笔记。

2025-09-06 11:06:59 796

原创 【论文阅读】FlowNet 2.0:Evolution of Optical Flow Estimation with Deep Networks

直接用CNN预测光流的方式颠覆了以往光流检测领域的传统方法。但是其依然很难和现有的优秀传统算法竞争。我们提出的FlowNet2.0达到了SOTA的水平。从Fig1可以看出,作为的升级版,FlowNet2.0可以产生更加smooth的光流场,对精细的运动细节捕捉的更好,运行速度可达8~140FPS。在这个例子上,FlowNet2.0的精度是的4倍。首先,我们评估了dataset schedules。使用多个数据集的组合明显提升了结果。并且,在此基础上,我们还发现带有相关层的明显优于没有相关层的。

2025-09-06 11:03:27 867

原创 【C++基础】第七十六课:[重载运算与类型转换]输入和输出运算符

【C++基础】系列博客为参考)一书,自己所做的读书笔记。

2025-09-06 11:01:34 889

原创 【程序是怎样跑起来的】第3章:计算机进行小数运算时出错的原因

像1011.0011这样带小数点的表现形式,完全是纸面上的二进制数表现形式,在计算机内部是无法使用的。那么,实际上计算机是以什么样的表现形式来处理小数的呢?很多编程语言中都提供了两种表示小数的数据类型,分别是双精度浮点数和单精度浮点数。双精度浮点数类型用64位、单精度浮点数类型用32位来表示全体小数1^11。浮点数2^22是指用符号、尾数、基数和指数这四部分来表示的小数(图3-3)。因为计算机内部使用的是二进制数,所以基数自然就是2。

2025-08-31 10:36:50 1273

原创 【论文阅读】FlowNet:Learning Optical Flow with Convolutional Networks

CNN在CV的许多领域得到了广泛的应用。其被应用于图像分类、语义分割、基于单张图像的深度估计等。在本文中,我们训练了一个端到端的CNN网络,以从一对图像中预测出光流场。光流估计即需要精确定位每个像素,同时也需要找到两张输入图像之间的对应关系。这不仅涉及对图像表征的学习,还涉及学习在两幅图像中的不同位置去匹配这些特征。在这方面,光流估计和之前的那些基于CNN的应用有着本质的不同。

2025-08-31 10:34:39 1171

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除