Floyd算法--------------牛站

给定一张由T条边构成的无向图,点的编号为1~1000之间的整数。
求从起点S到终点E恰好经过N条边(可以重复经过)的最短路。
注意: 数据保证一定有解。
输入格式
第1行:包含四个整数N,T,S,E。
第2…T+1行:每行包含三个整数,描述一条边的边长以及构成边的两个点的编号。
输出格式
输出一个整数,表示最短路的长度。
数据范围
2≤T≤1002≤T≤100,

2≤N≤1062≤N≤106
输入样例:
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

输出样例:
10

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
const int N = 210;
int k, n, m, S, E;
int g[N][N];
int res[N][N];
void mul(int c[][N], int a[][N], int b[][N]){
 static int temp[N][N];
 memset(temp, 0x3f, sizeof temp);
  for (int k = 1; k <= n; k ++)
    for (int i = 1; i <= n; i ++)
       for (int j = 1; j <= n; j ++)
         temp[i][j] = min(temp[i][j], a[i][k] + b[k][j]);
          memcpy(c, temp, sizeof temp);
}
void qmi(){
 memset(res, 0x3f, sizeof res);
 for (int i = 1; i <= n; i ++)   res[i][i] = 0;
  while(k){
  if (k & 1)   mul(res, res, g);
  mul(g, g, g);
  k >>= 1;
 }
}
int main(){
 cin >> k >> m >> S >> E;
 memset(g, 0x3f, sizeof g);
  map<int, int> ids;
 if (!ids.count(S))    ids[S] = ++n;
 if (!ids.count(E))    ids[E] = ++n;
 S = ids[S],  E = ids[E];
  while(m --){
  int a, b, c;
  cin >> c >> a >> b;
  if (!ids.count(a))    ids[a] = ++n;
  if (!ids.count(b))    ids[b] = ++n;
  a = ids[a], b = ids[b];
  g[a][b] = g[b][a] = min(g[a][b], c);
 }
  qmi();
  cout << res[S][E] << endl;
  return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值