给定一张由T条边构成的无向图,点的编号为1~1000之间的整数。
求从起点S到终点E恰好经过N条边(可以重复经过)的最短路。
注意: 数据保证一定有解。
输入格式
第1行:包含四个整数N,T,S,E。
第2…T+1行:每行包含三个整数,描述一条边的边长以及构成边的两个点的编号。
输出格式
输出一个整数,表示最短路的长度。
数据范围
2≤T≤1002≤T≤100,
2≤N≤1062≤N≤106
输入样例:
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
输出样例:
10
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
const int N = 210;
int k, n, m, S, E;
int g[N][N];
int res[N][N];
void mul(int c[][N], int a[][N], int b[][N]){
static int temp[N][N];
memset(temp, 0x3f, sizeof temp);
for (int k = 1; k <= n; k ++)
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= n; j ++)
temp[i][j] = min(temp[i][j], a[i][k] + b[k][j]);
memcpy(c, temp, sizeof temp);
}
void qmi(){
memset(res, 0x3f, sizeof res);
for (int i = 1; i <= n; i ++) res[i][i] = 0;
while(k){
if (k & 1) mul(res, res, g);
mul(g, g, g);
k >>= 1;
}
}
int main(){
cin >> k >> m >> S >> E;
memset(g, 0x3f, sizeof g);
map<int, int> ids;
if (!ids.count(S)) ids[S] = ++n;
if (!ids.count(E)) ids[E] = ++n;
S = ids[S], E = ids[E];
while(m --){
int a, b, c;
cin >> c >> a >> b;
if (!ids.count(a)) ids[a] = ++n;
if (!ids.count(b)) ids[b] = ++n;
a = ids[a], b = ids[b];
g[a][b] = g[b][a] = min(g[a][b], c);
}
qmi();
cout << res[S][E] << endl;
return 0;
}