给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:
1、“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。
2、“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。
对于每个询问,输出一个整数表示答案。
输入格式
第一行两个整数N,M。
第二行N个整数A[i]。
接下来M行表示M条指令,每条指令的格式如题目描述所示。
输出格式
对于每个询问,输出一个整数表示答案。
每个答案占一行。
数据范围
N≤500000,M≤100000N≤500000,M≤100000
输入样例:
5 5
1 3 5 7 9
Q 1 5
C 1 5 1
Q 1 5
C 3 3 6
Q 2 4
输出样例:
1
2
4
思路:第一个问题:如何把区间的每一个数都加d,弄一个差分数组,线段树中存储的差分数组,第二个问题:如何求一个区间内所有数的最大公约数,并且区间部分数加上一个d,维持这个最大公约数,仍然是利用线段树。首先求最大公约数时有一个性质,(a1,a2,…a[n])=(a1,a2-a2,a3-a2,…,a[n]-a[n-1]) 这个性质是可以证明的这里就不证明了,通过这个公式,我们可以知道线段树中还需要维护一个差分数组的和每当在一个数上增加一个数的时候,更新他的父节点,一个父节点的最大公约数是它左右俩个儿子的最大公约数的最大公约数,然后从子节点到父节点持续更新。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=500010;
int n,m;
LL w[N];
struct Node{
int l,r;
LL sum,d;
}tr[N*4];
LL gcd(LL a,LL b){
return b?gcd(b,a%b):a;
}
void pushup(Node &u,Node &l,Node &r){
u.sum=l.sum+r.sum;
u.d=gcd(l.d,r.d);
}
void pushup(int u){
return pushup(tr[u],tr[u<<1],tr[u<<1 | 1]);
}
void build(int u,int l,int r){
if(l==r){
LL b=w[r]-w[r-1];
tr[u]={r,r,b,b};
}
else{
tr[u].l=l,tr[u].r=r;
int mid=l+r>>1;
build(u<<1,l,mid),build(u<<1 | 1,mid+1,r);
pushup(u);
}
}
void modify(int u,int x,LL v){
if(tr[u].l==x && tr[u].r==x){
LL b=tr[u].sum+v;
tr[u]={x,x,b,b};
}
else{
int mid=tr[u].l+tr[u].r>>1;
if(x<=mid) modify(u<<1,x,v);
else modify(u<<1 | 1,x,v);
pushup(u);
}
}
Node query(int u,int l,int r){
if(tr[u].l>=l && tr[u].r<=r) return tr[u];
else{
int mid=tr[u].l+tr[u].r>>1;
if(r<=mid) return query(u<<1,l,r);
else if(l>mid) return query(u<<1 | 1,l,r);
else{
auto left=query(u<<1,l,r);
auto right=query(u<<1 | 1,l,r);
Node res;
pushup(res,left,right);
return res;
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%lld",&w[i]);
build(1,1,n);
int l,r;
LL d;
char op[2];
while(m--){
scanf("%s%d%d",op,&l,&r);
if(*op=='Q'){
auto left=query(1,1,l),right=query(1,l+1,r);
printf("%lld\n",abs(gcd(left.sum,right.d)));
}
else{
scanf("%lld",&d);
modify(1,l,d);
if(r+1<=n) modify(1,r+1,-d);
}
}
return 0;
}