【蓝桥杯】对局匹配(O(n)解法 取巧)

本文介绍了蓝桥杯中一个关于在线围棋对局匹配的问题,系统要求积分差为K的用户才能匹配。给定用户积分,目标是找出最多无法匹配的用户数量。通过分析给出的样例和思路,可以得出O(n)复杂度的解决方案。
摘要由CSDN通过智能技术生成

题目描述
小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。
小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。
现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, … AN。
小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?
输入
第一行包含两个个整数N和K。
第二行包含N个整数A1, A2, … AN。
对于30%的数据,1 <= N <= 10
对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
输出
一个整数,代表答案。
样例输入
10 0
1 4 2 8 5 7 1 4 2 8
样例输出
6

思路
思路都在代码里
AC代码

#include <bits/stdc++.h>
#include <cstdio>
using namespace std;

int a[100000];
int ans;
void zero(int &num){
   
    ans-=num;
    num = 0;
}
int main() {
   
    int n,k;
    int max_score=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值