思路
其实思路很清晰, 我们要求所有的贡献和,而每一种贡献都在
0
到
n
−
1
0 到 n - 1
0到n−1中, 假设我们先求贡献为
x
x
x 的数列, 我们只需求出贡献为x的不同的序列的个数即可, 很显然1到x + 1, 和2 到 x + 2中的序列数是一样的,所以我们只要求出1到sx + 1中的种数,再乘以可选的区间数就 == 贡献为x的所有序列数。
对于1到x + 1怎样求可选的序列数呢, 因为我们的序列只有m个数, 但由于这个区间中的贡献已经确定好了,所以1, 和x 必选, 即只需在1到x + 1中选m - 2个数即可(可重复)这里直接给出组合数为(
C
n
−
m
+
1
m
C_{n - m + 1}^m
Cn−m+1m, 意思是n个数中选m个可重复选的选法)
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll ;
const ll N = 1e6 + 10;
ll mod = 998244353;
ll n, m, p = mod, fac[N];
void init()
{
fac[0] = 1, fac[1] = 1;
for(ll i = 2; i < N; i++)
{
fac[i] = fac[i - 1] * i % mod;
}
}
ll qpow(ll a, ll b)
{
ll ans;
for(ans = 1; b; b >>= 1, a = a * a % p)
if(b & 1)
ans = ans * a % p;
return ans;
}
ll getc(ll n, ll m)
{
if(n < m)
return 0;
if(m > n - m)
m = n - m;
ll s1 = 1, s2 = 1;
/* for(ll i = 0; i < m; i++)
{
s1 = s1 * (n - i) % p;
s2 = s2 * (i + 1) % p;
} */
s1 = fac[n] * qpow(fac[n - m], p - 2) % p;
s2 = fac[m];
return s1 * qpow(s2, p - 2) % p;
}
ll lucas(ll n, ll m)
{
if(m == 0)
return 1;
return getc(n % p, m % p) * lucas(n / p, m / p) % p;
}
int main()
{
init();
ll n, m;
cin >> n >> m;
ll ans = 0;
m -= 2;
for(ll i = 1; i < n; i++)
{
ll len = n - i;
ll num = i + 1;
ans = (ans + len * ( i * lucas(num + m - 1, m) % mod)) % mod;
}
cout << ans << endl;
return 0;
}