比武招亲(上)(lucas定理, 逆元, 组合数)

在这里插入图片描述
思路
其实思路很清晰, 我们要求所有的贡献和,而每一种贡献都在 0 到 n − 1 0 到 n - 1 0n1中, 假设我们先求贡献为 x x x 的数列, 我们只需求出贡献为x的不同的序列的个数即可, 很显然1到x + 1, 和2 到 x + 2中的序列数是一样的,所以我们只要求出1到sx + 1中的种数,再乘以可选的区间数就 == 贡献为x的所有序列数。
对于1到x + 1怎样求可选的序列数呢, 因为我们的序列只有m个数, 但由于这个区间中的贡献已经确定好了,所以1, 和x 必选, 即只需在1到x + 1中选m - 2个数即可(可重复)这里直接给出组合数为( C n − m + 1 m C_{n - m + 1}^m Cnm+1m, 意思是n个数中选m个可重复选的选法)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll ;
const ll N = 1e6 + 10;
ll mod = 998244353;
ll  n, m, p = mod, fac[N];

void init()
{
    fac[0] = 1, fac[1] = 1;
    for(ll i = 2; i < N; i++)
    {
        fac[i] = fac[i - 1] * i % mod;
    }
}
ll qpow(ll a, ll b)
{
    ll ans;
    for(ans = 1; b; b >>= 1, a = a * a % p)
        if(b & 1)
            ans = ans * a % p;
    return ans;
}
ll getc(ll n, ll m)
{
    if(n < m)
        return 0;
    if(m > n - m)
        m = n - m;
    ll  s1 = 1, s2 = 1;
   /* for(ll i = 0; i < m; i++)
    {
        s1 = s1 * (n - i) % p;
        s2 = s2 * (i + 1) % p;
    } */
    s1 = fac[n] * qpow(fac[n - m], p - 2) % p;
    s2 = fac[m];
    return s1 * qpow(s2, p - 2) % p;
}
ll lucas(ll n, ll m)
{
    if(m == 0)
        return 1;
    return getc(n % p, m % p) * lucas(n / p, m / p) % p;
}

int main()
{
    init();
	ll n, m;
	cin >> n >> m;
	ll  ans = 0;
	m -= 2;
	for(ll i = 1; i < n; i++)
	{
		ll  len = n - i;
		ll  num = i + 1;
		ans = (ans + len * ( i * lucas(num + m - 1, m) % mod)) % mod;
	}
	cout << ans << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值