问题描述:
给你一个整数数组 nums 和一个整数 target 。向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
示例1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例2:
输入:nums = [1], target = 1
输出:1
思路:
这个问题有点类似于全排列,简单讲就是枚举所有的情况,类似于一个二叉树,每个节点都被分为加和减两个子树,最后查看叶子节点的值,检验一下叶子节点的值是否是目标值即可,计算个数。
具体过程使用深度优先搜索即可,因为构造出来的是一个完全二叉树,这里就暴力吧…
Java代码:
/**
* @Description: 力扣494题题解
* @return: 返回结果
* @Author: Mr.Gao
* @Date: 2021/6/7
*/
int count=0;
int x = 0;
public int findTargetSumWays(int[] nums, int target) {
x= target;
dfs(nums,0,0);
return count;
}
public void dfs(int[] num,int deep,int re){
if(deep==num.length&&re == x){
count++;
}else if(deep<num.length){
dfs(num,deep+1,re+num[deep]);
dfs(num,deep+1,re-num[deep]);
}
}