题目
给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
解法
方法一:回溯
只有两种操作符,所以可以枚举所有可能性
class Solution {
int count = 0;
public int findTargetSumWays(int[] nums, int target) {
backtrack(nums, target, 0, 0);
return count;
}
public void backtrack(int[] nums, int target, int index, int sum) {
if (index == nums.length) {
if (sum == target) {
count++;
}
} else {
backtrack(nums, target, index + 1, sum + nums[index]);
backtrack(nums, target, index + 1, sum - nums[index]);
}
}
}
方法二:dp
设输入数组的和为sum,那么sum-target= diff。
1.若这个diff小于0则证明全为“+”也不可以达到target。
2.若diff不是2的倍数,说明也不可能达到target。
设t = diff/2,若输入的数组有子数组之和是t,让这个子数组的数字系数都是-1,其他数字的系数是+1,则 (sum-t) +(-1)* t = target。
所以使用dp去求这个数组中是否有子数组的和是t。
dp的边界条件为
状态转移方程为
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int sum = 0;
for(int n : nums){
sum += n;
}
int diff = sum - target;
if(diff < 0 || (diff & 1) != 0) {
return 0;
}
diff /= 2;
int[][] dp = new int[nums.length+1][diff + 1];
dp[0][0] = 1;
for(int i = 1 ; i <= nums.length ; ++i) {
int n = nums[i-1];
for(int j = 0; j <= diff; ++j){
dp[i][j] = dp[i-1][j];
if(n <= j){
dp[i][j] += dp[i-1][j-n];
}
}
}
return dp[nums.length][diff];
}
}