adaboost

算法概述

优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整
缺点:对离群点敏感
适用数据类型:数值型和标称型

bagging

自举汇聚法,是在从原始数据集选择S次后得到S个数据集的一种技术。

新数据集和原数据集的大小相等

每个数据集都是通过在原始数据集中随机选择样本来进行替换而得到的

S个数据集建好之后,将某个学习算法分别作用于每个数据集就得到S个分类器

选择分类器投票结果中最多的类别作为最后的分类结果

改进的bagging方法:随机森林等

boosting

集中关注被已有分类器错分的哪些数据来得到新的分类器

bagging的分类器权重是相等的,boosting的权重并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度

一般流程

1.收集数据:可以使用任意方法
2.准备数据:依赖于所使用的弱分类器类型,这里使用的单层决策树可以处理任何数据类型。当然也可以使用任意分类器作为弱分类器,作为弱分类器,简单分类器的效果最好
3.分析数据:可以使用任意方法
4.训练算法:分类器将多次在同一数据集上训练弱分类器
5.测试算法:计算分类的错误率
6.使用算法:同SVM一样,adaboost预测两个类别中的一个,若要运用到多个类别,也要使用核函数

组合弱分类器
多专家组合

一种并行结构,所有的弱分类器都给出各自的预测结果,通过“组合器“把这些预测结果转化为最终结果。eg:投票(voting)及其变种、混合专家模型

多级组合

一种串行结构,其中下一个分类器只在前一个分类器预测不够准(不够自信)的实例上进行训练或检测。eg:级联算法(cascading)

基本概念

在这里插入图片描述

训练误差分析

由:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
得到在这里插入图片描述###### 伪代码

将最小错误率minError设为正无穷
对数据集中的每一个特征(第一层循环):
        对每个步长(第二层循环):
               对每个不等号(第三层循环):
                      建立一颗单层决策树并利用加权数据集对它进行测试
                      如果错误率低于minError,则将当前单层决策树设为最佳单层决策树
返回最佳单层决策树
### AdaBoost算法的实现原理 AdaBoost(Adaptive Boosting)是一种经典的提升(Boosting)算法,最初由Yoav Freund和Robert Schapire于1995年提出[^1]。该算法的核心思想在于通过多次迭代训练多个弱学习器,并根据每次预测的结果调整样本权重,使得后续的学习器更加关注之前被错误分类的样本。 具体来说,AdaBoost的工作流程如下: 1. 初始化数据集中的每个样本权重为相等值。 2. 在每一轮迭代中,基于当前样本权重训练一个弱学习器。 3. 计算弱学习器的误差率以及对应的权重系数α。 4. 更新样本权重,增加那些被误分类样本的权重,减少正确分类样本的权重。 5. 将本轮得到的弱学习器加入到最终模型中,形成加权投票机制。 6. 循环上述过程直到达到预设的最大迭代次数或满足其他停止条件。 这种逐步改进的过程能够有效提高整体模型的表现能力。 ```python from sklearn.ensemble import AdaBoostClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split # 创建模拟数据集 X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, random_state=42) # 划分训练集与测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) # 构建AdaBoost分类器,默认基估计器为决策树桩 ada_clf = AdaBoostClassifier(n_estimators=50, learning_rate=1.0, random_state=42) # 模型拟合 ada_clf.fit(X_train, y_train) # 输出模型得分 print(f"Training Accuracy: {ada_clf.score(X_train, y_train)}") print(f"Test Accuracy: {ada_clf.score(X_test, y_test)}") ``` 以上代码展示了如何利用`scikit-learn`库快速构建并评估一个简单的AdaBoost分类器[^2]。 ### 使用案例分析 AdaBoost在实际应用中有许多成功案例,尤其是在二分类问题上表现出色。例如,在金融领域可以用于信用评分;在医疗诊断方面可用于疾病检测;另外还常见于图像处理任务如人脸识别等领域。由于其灵活性高且易于扩展至多类别的场景下工作,因此具有广泛的适用范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值