numpy矩阵操作详解

本文详细介绍了NumPy中的矩阵库numpy.matlib,包括如何通过empty、zeros、ones、eye和identity函数生成矩阵,以及矩阵的转置和常用运算。重点讲解了numpy.linalg中的矩阵分解和求逆操作,适合NumPy初学者参考。
摘要由CSDN通过智能技术生成

1、numpy矩阵库(Matrix)
➢NumPy中包含了- -个矩阵库numpy.matlib, 该模块中的函数返回的是一 个矩阵,而不是ndarray对象。
➢一个mxn的矩阵是一个由m行(row) n列(column) 元素排列成的矩形阵列。
➢矩阵里的元素可以是数字、符号或数学式。
➢NumPy 和Matlab不一样,对于多维数组的运算,缺省情况 下并不使用矩阵运算,如果你希望对数组进行矩阵运算的话,可以调用ndarry对象相应的函数。
2、常规方式生成

import numpy as np
x=np.matrix([[1,2,3],[4,5,6]])
y=np.matrix([1,2,3,4,5,6])
#x[0,0]返回行下标和列下标都为0的元素
#注意,对于矩阵x来说,x[0,0]和x[0][0]的含义不一样
print(x,y,x[0,0],x[0][0],sep='\n\n')

matlib.empty()
numpy . matlib. empty(shape, dtype, order)
➢shape: 定义新矩阵形状的整数或整数元组
➢Dtype:可选,数据类型
➢order: C (行序优先) 或者F (列序优先)

import numpy.matlib
import numpy as np
print(np.matlib.empty((2,2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值