势函数算法的迭代

本文详细介绍了势函数算法的迭代过程,包括基本思想、判别函数的产生和逐步分析。通过势函数法,根据样本点在模式空间中的分布形成“高地”和“凹地”,通过不断迭代和修正,构建出可以区分两类样本的判别函数。实验旨在让学生掌握非线性判别函数的设计,并通过实例训练和测试验证分类器的准确性。
摘要由CSDN通过智能技术生成

势函数算法的迭代训练

1.势函数法基本思想

  • 假设要划分属于两种类别ω1ω1和ω2ω2的模式样本,这些样本可看成是分布在nn维模式空间中的点xkxk。
  • 把属于ω1ω1的点比拟为某种能源点,在点上,电位达到峰值。
  • 随着与该点距离的增大,电位分布迅速减小,即把样本xkxk附近空间xx点上的电位分布,看成是一个势函数K(x,xk)K(x,xk)。
  • 对于属于ω1ω1的样本集群,其附近空间会形成一个"高地",这些样本点所处的位置就是"山头"。
  • 同理,用电位的几何分布来看待属于ω2ω2的模式样本,在其附近空间就形成"凹地"。
  • 只要在两类电位分布之间选择合适的等高线,就可以认为是模式分类的判别函数。

2.判别函数的产生

  • 模式分类的判别函数可由分布在模式空间中的许多样本向量{xk,k=1,2,⋯且,xk∈ω1∪w2}{xk,k=1,2,⋯且,xk∈ω1∪w2}的势函数产生。
  • 任意一个样本所产生的势函数以K(x,xk)K(x,xk)表征,则判别函数d(x)d(x)可由势函数序列K(x,x1),K(x,x2),⋯K(x,x1),K(x,x2),⋯来构成,序列中的这些势函数相应于在训练过程中输入机器的训练模式样本x1,x2,⋯x1,x2,⋯。
  • 在训练状态,模式样本逐个输入分类器,分类器就连续计算相应的势函数,在第kk步迭代时的积累位势决定于在该步前所有的单独势函数的累加。
  • 以K(x)K(x)表示积累位势函数,若加入的训练样本xk+1xk+1是错误分类,则积累函数需要修改,若是正确分类,则不变。

3.判别函数产生逐步分析

设初始势函数K0(x)=0K0(x)=0

第一步:加入第一个训练样本x1x1,

则有

K1(x)={K(x,x1)−K(x,x1)ifx1∈ω1ifx1∈ω2K1(x)={K(x,x1)ifx1∈ω1−K(x,x1)ifx1∈ω2

这里第一步积累势函数K1(x)K1(x)描述了加入第一个样本时的边界划分。当样本属于ω1ω1时,势函数为正;当样本属于ω2ω2时,势函数为负。

第二步:加入第二个训练样本x2x2,

则有

  1. 若x2∈ω1x2∈ω1且K1(x2)>0K1(x2)>0,或x2∈ω2x2∈ω2且K1(x2)<0K1(x2)<0,则分类正确,此时K2(x)=K1(x)K2(x)=K1(x),即积累势函数不变。

  2. 若x2∈ω1x2∈ω1且K1(x——2)<0K1(x——2)<0,则

    K2(x)=K1(x)+K(x,x2)=±K(x,x1)+K(x,x2)K2(x)=K1(x)+K(x,x2)=±K(x,x1)+K(x,x2)

  3. 若x2∈ω2x2∈ω2且K1(x2)>0K1(x2)>0,则

K2(x)=K1(x)−K(x,x2)=±K(x,x1)−K(x,x2)K2(x)=K1(x)−K(x,x2)=±K(x,x1)−K(x,x2)

以上(ii)、(iii)两种情况属于错分。假如x2x2处于K1(x)K1(x)定义的边界的错误一侧,则当x∈ω1x∈ω1时,积累位势K2(x)K2(x)要加K(x,x2)K(x,x2),当x∈ω2x∈ω2时,积累位势K2(x)K2(x)要减K(x,x2)K(x,x2)。

第KK步:设Kk(x)Kk(x)为加入训练样本x1,x2,⋯,xkx1,x2,⋯,xk后的积累位势,则加入第(k+1)(k+1)个样本时,Kk+1(x)Kk+1(x)决定如下:

\1. 若xk+1∈ω1xk+1∈ω1且Kk(xk+1)>0Kk(xk+1)>0,或xk+1∈ω2xk+1∈ω2且Kk(xk+1)<0Kk(xk+1)<0,则分类正确,此时Kk+1(x)=Kk(x)Kk+1(x)=Kk(x),即积累位势不变。

\2. 若xk+1∈ω1xk+1∈ω1且Kk(xk+1)<0Kk(xk+1)<0,则Kk+1(x)=Kk(x)+K(x,xk+1)Kk+1(x)=Kk(x)+K(x,xk+1);

\3. 若xk+1∈ω2xk+1∈ω2且Kk(xk+1)>0Kk(xk+1)>0,则Kk+1(x)=Kk(x)−K(x,xk+1)Kk+1(x)=Kk(x)−K(x,xk+1).

因此,积累位势的迭代运算可写成:Kk+1(x)=Kk(x)+rk+1K(x,xk+1)Kk+1(x)=Kk(x)+rk+1K(x,xk+1),rk+1rk+1为校正系数:

rk+1=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪001−1ifxk+1∈ω1andKk(xk+1)>0ifxk+1∈ω2andKk(xk+1)<0ifxk+1∈ω1andKk(xk+1)<0ifxk+1∈ω2andKk(xk+1)>0rk+1={0ifxk+1∈ω1andKk(xk+1)>00ifxk+1∈ω2andKk(xk+1)<01ifxk+1∈ω1andKk(xk+1)<0−1ifxk+1∈ω2andKk(xk+1)>0

若从给定的训练样本集x1,x2,⋯,xk,⋯x1,x2,⋯,xk,⋯中去除不使积累位势发生变化的样本,即使Kj(xj+1)>0Kj(xj+1)>0且xj+1∈ω1xj+1∈ω1,或Kj(xj+1)<0Kj(xj+1)<0且xj+1∈ω2xj+1∈ω2的那些样本,则可得一简化的样本序列{x⌢1,x⌢2,…,x⌢j,…}{x⌢1,x⌢2,…,x⌢j,…},它们完全是校正错误的样本。此时,上述迭代公式可归纳为:

Kk+1(x)=∑x⌢jajK(x,x⌢j)Kk+1(x)=∑x⌢jajK(x,x⌢j)

其中

aj={+1−1f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值