动态规划五部曲:1.确定dp[i]的含义2.递推公式3.初始化4.遍历顺序5.举例与打印出的dp对比
509.斐波那契数列
class Solution {
public:
int fib(int n) {
if(n<2) return n;//注意特殊情况的处理
vector<int> dp(n+1);
dp[0]=0;
dp[1]=1;
for(int i=2;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
节省空间的算法:一直用dp[0],dp[1],每次都是上两个数之和,只要记得一直把上两个数传递给dp[0]和dp[1]就行
class Solution {
public:
int fib(int n) {
if(n<2) return n;
vector<int> dp(2);
dp[0]=0;
dp[1]=1;
int sum=0;
for(int i=2;i<=n;i++){
sum=dp[0]+dp[1];
dp[0]=dp[1];
dp[1]=sum;
//dp[i]=dp[i-1]+dp[i-2];
}
return dp[1];
}
};
递归:
if(n<2) return n;
return fib(n-1)+fib(n-2);
70.爬楼梯
本质就是斐波那契数列
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n+1);
if(n<3) return n;
dp[1]=1;
dp[2]=2;
for(int i=3;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
746.使用最小花费爬楼梯
1.dp[i]:到达台阶i需要的最小花费
2.递推公式:dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
3.初始化:dp[0],dp[1]=0
4.从前向后遍历
5.举例
注意:因为爬楼梯要爬到顶,也就是说dp[i]的i实际上比cost.size()多1。
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size()+1);
dp[0]=0;
dp[1]=0;
for(int i=2;i<=cost.size();i++){
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
}
return dp[cost.size()];
}
};
使用小空间内存的方法:
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
//vector<int> dp(cost.size()+1);
//dp[0]=0;
//dp[1]=0;
int dp0=0;
int dp1=0;
for(int i=2;i<=cost.size();i++){
//dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
int dpi=min(dp0+cost[i-2],dp1+cost[i-1]);
dp0=dp1;
dp1=dpi;
}
return dp1;
//return dp[cost.size()];
}
};