【AI知识】逻辑回归介绍+ 做二分类任务的实例(代码&可视化)

1. 分类的基本概念

在机器学习的有监督学习中,分类一种常见任务,它的目标是将输入数据分类到预定的类别中。具体来说:
在这里插入图片描述

分类任务的常见应用:

  • 垃圾邮件分类:判断一封电子邮件是否是垃圾邮件 。

  • 医学诊断:根据病人的症状、检查结果等特征预测病人的疾病类型(如癌症、糖尿病等)。

分类任务的类型:

  • 二分类(Binary Classification): 在二分类问题中,模型需要将输入数据分为两个类别,输入属于两个类别中的一个。如判断一封邮件是垃圾邮件还是非垃圾邮件。

  • 多分类(Multiclass Classification): 在多分类问题中,模型需要将输入数据分为超过两个类别,输入属于多个类别中的一个。如手写数字识别(数字 0 到 9),根据图像内容将其分类为一个数字。

  • 多标签分类(Multilabel Classification): 多标签分类任务是指每个样本可以同时属于多个类别,也就是一个样本可以同时拥有多个标签。如一部电影可以同时属于“动作”和“科幻”两个类别。

分类模型的常用算法: 逻辑回归(Logistic Regression)、支持向量机(SVM, Support Vector Machine)、 K-近邻算法(KNN, K-Nearest Neighbors)、 决策树(Decision Trees)、 随机森林(Random Forest)等。

回归和分类的区别:

  • 回归(Regression): 回归任务的目标是预测一个连续的数值输出,模型输出的是一个实数值。回归常用于预测数量、价格、温度等连续型变量。
  • 分类(Classification): 分类任务的目标是将输入样本分配到有限的类别中,它的输出是离散的标签,通常是类别的编号或名称。分类问题通常用于处理类别标签的任务。

2. 逻辑回归(Logistic Regression)

逻辑回归(Logistic Regression)是一种广泛使用的线性分类模型,尽管它的名字中带有“回归”二字,但它其实是一种用于分类任务的算法,特别适用于二分类问题,也可以通过扩展来处理多分类问题。逻辑回归通过使用Sigmoid函数将线性回归的输出转换为概率值,这个概率值表示一个样本属于某个类别的概率,从而进行分类预测。

在这里插入图片描述
Sigmoid函数将线性回归的结果 𝑧 转换为一个介于 0 和 1 之间的概率值 y ^ \hat{y} y^ ,通常通过设置一个阈值(比如 0.5)来进行分类判断。如果 y ^ \hat{y} y^ >=0.5 ,则预测为类别 1,否则类别为0。

  • 逻辑回归的损失函数: 与线性回归的均方误差(MSE)不同,做二分类的逻辑回归使用的是对数损失函数(Log Loss),用于度量模型输出概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值