langchain_community.chat_message_histories.RedisChatMessageHistory
类是 LangChain 社区库中用于将聊天消息历史存储到 Redis 数据库的工具类,适合高并发、持久化的多轮对话上下文管理。
本文基于 LangChain 0.3.x ,全程使用中文,详细介绍 RedisChatMessageHistory
的定义、参数、方法和典型场景,并提供一个独立示例,展示如何使用 RedisChatMessageHistory
结合 ChatOpenAI
和 Redis 实现人工智能主题的多轮对话,示例突出消息历史的持久化存储和高并发支持。
langchain_community.chat_message_histories.RedisChatMessageHistory
简介
RedisChatMessageHistory
是 LangChain 社区库中的消息历史存储类,通过 Redis 数据库(一个高性能的键值存储)持久化存储对话消息(HumanMessage
、AIMessage
等)。它适合需要高并发访问、快速读写和持久化对话历史的场景,特别适用于生产级聊天机器人或多用户应用。相比内存存储的 ChatMessageHistory
或 SQLChatMessageHistory
,Redis 提供更高的吞吐量和分布式支持。
核心功能:
- 将对话消息存储到 Redis,支持持久化和高并发。
- 按会话 ID(
session_id
)组织消息,支持多用户或多会话。 - 支持添加、获取、清除消息。
- 集成到对话链,实现上下文感知的多轮对话。
适用场景:
- 构建高并发聊天机器人,需快速读写对话历史。
- 多用户应用,跟踪每个用户的会话。
- 分布式系统,需跨实例共享对话历史。
- 与 LLM 链结合,提供长期上下文支持。
与其他消息历史类对比:
ChatMessageHistory
:内存存储,临时使用,非持久化。SQLChatMessageHistory
:基于 SQL 数据库,持久化但并发性能较低。RedisChatMessageHistory
:基于 Redis,高并发、持久化,适合生产环境。
类定义和初始化
以下是 RedisChatMessageHistory
的定义,基于 LangChain 社区库源码(langchain_community/chat_message_histories/redis.py
)和官方文档(RedisChatMessageHistory)。
类签名
class RedisChatMessageHistory(BaseChatMessageHistory):
def __init__(
self,
session_id: str,
redis_url: str = "redis://localhost:6379/0",
key_prefix: str = "message_store:",
ttl: Optional[int] = None
) -> None
- 参数:
session_id
(str
):会话标识符,区分不同对话。redis_url
(str
,默认"redis://localhost:6379/0"
):Redis 连接 URL。key_prefix
(str
,默认"message_store:"
):Redis 键前缀,用于命名空间。ttl
(Optional[int]
,默认None
):消息的生存时间(秒),过期自动删除。
- 功能:
- 使用 Redis 列表存储消息,按
session_id
组织。 - 键格式:
{key_prefix}{session_id}
(如message_store:ai_chat_001
)。 - 支持高并发读写和可选的自动过期。
- 使用 Redis 列表存储消息,按
初始化示例
from langchain_community.chat_message_histories import RedisChatMessageHistory
history = RedisChatMessageHistory(
session_id="ai_chat_001",
redis_url="redis://localhost:6379/0",
key_prefix="message_store:",
ttl=3600 # 消息保留 1 小时
)
Redis 存储结构
RedisChatMessageHistory
使用 Redis 列表(List)存储消息:
- 键:
{key_prefix}{session_id}
(如message_store:ai_chat_001
)。 - 值:消息序列化的 JSON 列表,按时间顺序存储。
- 示例(Redis CLI):
LRANGE message_store:ai_chat_001 0 -1 # 输出: # ["{\"type\": \"human\", \"content\": \"什么是人工智能?\"}", # "{\"type\": \"ai\", \"content\": \"人工智能是计算机科学的一个分支。\"}"]
常用方法
RedisChatMessageHistory
继承自 langchain_core.chat_history.BaseChatMessageHistory
,提供以下核心方法。
1. add_message
def add_message(self, message: BaseMessage) -> None
- 功能:添加单条消息到 Redis 列表。
- 输入:
message
(BaseMessage
),如HumanMessage
或AIMessage
。 - 示例:
from langchain_core.messages import HumanMessage, AIMessage history.add_message(HumanMessage(content="什么是人工智能?")) history.add_message(AIMessage(content="人工智能是计算机科学的一个分支。"))
2. add_user_message
def add_user_message(self, message: str) -> None
- 功能:添加用户消息(
HumanMessage
)。 - 输入:
message
(str
),用户输入文本。 - 示例:
history.add_user_message("AI 有哪些应用?")
3. add_ai_message
def add_ai_message(self, message: str) -> None
- 功能:添加 AI 消息(
AIMessage
)。 - 输入:
message
(str
),模型响应文本。 - 示例:
history.add_ai_message("AI 应用于医疗、自动驾驶等领域。")
4. clear
def clear(self) -> None
- 功能:删除当前
session_id
的所有消息。 - 示例:
history.clear() print(len(history.messages)) # 0
5. messages
属性
- 功能:从 Redis 查询当前
session_id
的消息列表。 - 输出:
List[BaseMessage]
,所有消息。 - 示例:
for msg in history.messages: print(f"{msg.__class__.__name__}: {msg.content}")
6. 异步方法
- 功能:异步版本方法(如
aclear
、aadd_message
)。 - 使用场景:高并发场景。
- 示例:
import asyncio await history.aclear()
使用方式
以下是使用 RedisChatMessageHistory
的步骤。
1. 安装依赖和 Redis
pip install --upgrade langchain langchain-openai langchain-community redis
安装 Redis 服务器:
- Ubuntu:
sudo apt update sudo apt install redis-server
- macOS:
brew install redis
启动 Redis:
redis-server
2. 设置 OpenAI API 密钥
export OPENAI_API_KEY="your-api-key"
或在代码中:
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
3. 初始化 RedisChatMessageHistory
from langchain_community.chat_message_histories import RedisChatMessageHistory
history = RedisChatMessageHistory(
session_id="ai_chat_001",
redis_url="redis://localhost:6379/0"
)
4. 构建对话链
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
llm = ChatOpenAI(model="gpt-3.5-turbo")
prompt = ChatPromptTemplate.from_messages([
("system", "你是一个人工智能专家,回答用户问题。"),
MessagesPlaceholder(variable_name="history"),
("human", "{input}")
])
chain = prompt | llm
5. 调用链并存储历史
from langchain_core.runnables.history import RunnableWithMessageHistory
chain_with_history = RunnableWithMessageHistory(
runnable=chain,
get_session_history=lambda session_id: RedisChatMessageHistory(
session_id=session_id,
redis_url="redis://localhost:6379/0"
),
input_messages_key="input",
history_messages_key="history"
)
response = chain_with_history.invoke(
{"input": "什么是人工智能?"},
config={"configurable": {"session_id": "ai_chat_001"}}
)
使用 RedisChatMessageHistory
的示例
以下是一个独立示例,展示如何使用 RedisChatMessageHistory
结合 ChatOpenAI
和 Redis 实现人工智能主题的多轮对话,持久化存储消息历史并支持高并发。示例使用 RunnableWithMessageHistory
简化对话管理。
准备环境:
- 获取 OpenAI API 密钥:OpenAI Platform。
- 设置环境变量:
export OPENAI_API_KEY="your-api-key"
- 安装依赖:
pip install --upgrade langchain langchain-openai langchain-community redis
- 启动 Redis 服务器:
redis-server
- 验证 Redis 连接:
redis-cli ping # 输出: PONG
代码:
from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables.history import RunnableWithMessageHistory
# 初始化 ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
# 定义提示模板
prompt = ChatPromptTemplate.from_messages([
("system", "你是一个人工智能专家,回答用户问题。"),
MessagesPlaceholder(variable_name="history"),
("human", "{input}")
])
# 定义输出解析器
parser = StrOutputParser()
# 创建对话链
chain = prompt | llm | parser
# 包装链以支持消息历史
chain_with_history = RunnableWithMessageHistory(
runnable=chain,
get_session_history=lambda session_id: RedisChatMessageHistory(
session_id=session_id,
redis_url="redis://localhost:6379/0",
ttl=3600 # 消息保留 1 小时
),
input_messages_key="input",
history_messages_key="history"
)
# 测试 RedisChatMessageHistory 和对话链
print("测试 RedisChatMessageHistory 和对话链:")
try:
session_id = "ai_chat_001"
# 第一轮对话
question1 = "什么是人工智能?"
result1 = chain_with_history.invoke(
{"input": question1},
config={"configurable": {"session_id": session_id}}
)
print(f"问题 1: {question1}")
print(f"回答 1: {result1}")
# 第二轮对话(依赖上下文)
question2 = "它有哪些应用?"
result2 = chain_with_history.invoke(
{"input": question2},
config={"configurable": {"session_id": session_id}}
)
print(f"\n问题 2: {question2}")
print(f"回答 2: {result2}")
# 显示消息历史
history = RedisChatMessageHistory(session_id=session_id, redis_url="redis://localhost:6379/0")
print("\n消息历史:")
for i, msg in enumerate(history.messages):
print(f"消息 {i+1} ({msg.__class__.__name__}): {msg.content}")
except Exception as e:
print(f"错误: {e}")
输出示例(实际输出取决于模型和 API 响应):
测试 RedisChatMessageHistory 和对话链:
问题 1: 什么是人工智能?
回答 1: 人工智能(AI)是计算机科学的一个分支,旨在模拟人类智能,如学习、推理和问题解决。
问题 2: 它有哪些应用?
回答 2: 人工智能的应用包括医疗诊断、自动驾驶、语音识别、推荐系统和金融分析等领域。
消息历史:
消息 1 (HumanMessage): 什么是人工智能?
消息 2 (AIMessage): 人工智能(AI)是计算机科学的一个分支,旨在模拟人类智能,如学习、推理和问题解决。
消息 3 (HumanMessage): 它有哪些应用?
消息 4 (AIMessage): 人工智能的应用包括医疗诊断、自动驾驶、语音识别、推荐系统和金融分析等领域。
代码说明
- RedisChatMessageHistory:
- 使用 Redis(
redis://localhost:6379/0
)存储消息。 - 设置
session_id="ai_chat_001"
区分会话,ttl=3600
限制消息保留 1 小时。
- 使用 Redis(
- LLM 初始化:
- 使用
ChatOpenAI
调用gpt-3.5-turbo
,设置temperature=0.7
。
- 使用
- 提示模板:
ChatPromptTemplate
包含系统消息、历史占位符和用户输入。MessagesPlaceholder
注入历史消息。
- 对话链:
- 使用 LCEL 组合
prompt
、llm
和parser
。 RunnableWithMessageHistory
包装链,动态加载RedisChatMessageHistory
。
- 使用 LCEL 组合
- 测试:
- 进行两轮对话:定义 AI 和询问应用。
- 使用
session_id
确保上下文一致。 - 显示 Redis 中的消息历史。
- 错误处理:
- 使用
try-except
捕获 API 或 Redis 错误。
- 使用
运行要求:
- 有效的 OpenAI API 密钥:
export OPENAI_API_KEY="your-api-key"
- 安装依赖:
pip install --upgrade langchain langchain-openai langchain-community redis
- 运行 Redis 服务器:
redis-server
- 网络连接:访问
https://api.openai.com
和本地 Redis(localhost:6379
)。
注意事项
- API 密钥:
- 确保
OPENAI_API_KEY
已设置:echo $OPENAI_API_KEY
- 或在代码中设置:
llm = ChatOpenAI(api_key="your-api-key")
- 确保
- Redis 配置:
- 确保 Redis 服务器运行:
redis-cli ping # 输出: PONG
- 配置 Redis 连接:
redis_url="redis://username:password@host:port/db"
- 测试连接:
import redis r = redis.Redis.from_url("redis://localhost:6379/0") r.ping()
- 确保 Redis 服务器运行:
- 会话 ID:
- 唯一
session_id
区分对话:session_id="ai_chat_001"
- 重复使用
session_id
加载历史:history = RedisChatMessageHistory(session_id="ai_chat_001", redis_url="redis://localhost:6379/0")
- 唯一
- TTL 设置:
- 设置消息过期时间:
history = RedisChatMessageHistory(ttl=86400) # 1 天
- 验证 TTL:
redis-cli TTL message_store:ai_chat_001
- 设置消息过期时间:
- 性能优化:
- 限制历史长度:避免上下文过长:
max_messages = 10 history.messages = history.messages[-max_messages:]
- 异步调用:使用
ainvoke
:result = await chain_with_history.ainvoke(input, config)
- Redis 连接池:提高并发性能:
import redis pool = redis.ConnectionPool.from_url("redis://localhost:6379/0") history = RedisChatMessageHistory(session_id="ai_chat_001", redis_url="redis://localhost:6379/0")
- 限制历史长度:避免上下文过长:
- 错误调试:
- Redis 连接错误:
- 检查连接:
import redis r = redis.Redis.from_url("redis://localhost:6379/0") r.ping()
- 验证键:
redis-cli KEYS message_store:*
- 检查连接:
- API 错误:
- 检查密钥:
print(os.environ.get("OPENAI_API_KEY"))
- 增加超时:
llm = ChatOpenAI(timeout=30)
- 检查密钥:
- 消息丢失:
- 检查历史:
print(history.messages)
- 验证
session_id
:print(session_id)
- 检查历史:
- Redis 连接错误:
常见问题
Q1:如何配置远程 Redis?
A:修改 redis_url
:
history = RedisChatMessageHistory(
session_id="ai_chat_001",
redis_url="redis://username:password@remote_host:6379/0"
)
Q2:如何清理特定会话历史?
A:调用 clear
:
history.clear()
或直接删除 Redis 键:
redis-cli DEL message_store:ai_chat_001
Q3:如何与 RAG 结合?
A:添加检索上下文:
from langchain.vectorstores import FAISS
vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
prompt = ChatPromptTemplate.from_messages([
("system", "根据上下文和历史回答:\n{context}"),
MessagesPlaceholder(variable_name="history"),
("human", "{input}")
])
chain = {"context": retriever, "history": lambda x: history.messages, "input": lambda x: x["input"]} | prompt | llm
Q4:如何支持开源模型?
A:使用 ChatOllama
:
from langchain_ollama import ChatOllama
llm = ChatOllama(model="llama3")
chain = prompt | llm | parser
chain_with_history = RunnableWithMessageHistory(
runnable=chain,
get_session_history=lambda session_id: RedisChatMessageHistory(
session_id=session_id,
redis_url="redis://localhost:6379/0"
),
input_messages_key="input",
history_messages_key="history"
)
总结
langchain_community.chat_message_histories.RedisChatMessageHistory
是 LangChain 中高性能、持久化对话历史的工具,核心功能包括:
- 定义:通过 Redis 存储消息历史。
- 初始化:配置
session_id
和redis_url
。 - 常用方法:
add_message
、add_user_message
、add_ai_message
、clear
。 - 适用场景:高并发对话、持久化存储、生产级应用。