二叉树利用前序遍历和中序遍历求二叉树及二叉树的后序遍历
二叉树的三种遍历分别是前序遍历,中序遍历以及后序遍历,遍历的核心在于根的位置,可以简记为:
前序遍历->根,左,右
中序遍历->左,根,右
后序遍历->左,右,根
如何运用其中两个求二叉树呢?是不是都可以呢?答案时否定的。
前序遍历和后序遍历确定的是根的位置,而中序遍历是二叉树的左右子树,所以如果同时有二叉树的前序遍历和后序遍历是不能求出二叉树的。下面给出已知前序遍历和中序遍历求二叉树及二叉树的方法
前序遍历:a b d e g c f h
中序遍历:d b e g a c h f
分析:由前序遍历可知a为根节点,由中序遍历知d b e g为a的左子树,c h f为右子树,对左子树分析,b为根节点,d为左子树,e g为右子树,前序中序均为e g则e为g的父节点,g是右子树;再分析a的右子树,c为右子树的根,h f和f h的顺序可知h为c的右子树,f为h的左子树
结果
后序遍历根据后序遍历的规则来的!!!
本文介绍了通过前序遍历和中序遍历确定二叉树结构的方法,并给出了具体的例子进行说明。此外还讨论了为什么不能仅凭前序和后序遍历来确定二叉树。
1366

被折叠的 条评论
为什么被折叠?



