LeetCode 解题思路 10(螺旋矩阵、旋转图像)

在这里插入图片描述

解题思路:

  1. 上边: 从左到右遍历顶行,完成后上边界下移(top++)。
  2. 右边: 从上到下遍历右列,完成后右边界左移(right–)。
  3. 下边: 从右到左遍历底行,完成后下边界上移(bottom–)。
  4. 左边: 从下到上遍历左列,完成后左边界右移(left++)。

Java代码:

class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        if (matrix.length == 0) return null;
        List<Integer> res = new ArrayList<>();
        int left = 0, top = 0;
        int bottom = matrix.length - 1;
        int right = matrix[0].length - 1;
        
        while (left <= right && top <= bottom) {

            for (int i = left; i <= right; i++)
                res.add(matrix[top][i]);
            top++;
            if (left > right || top > bottom) break;

            for (int i = top; i <= bottom; i++)
                res.add(matrix[i][right]);
            right--;
		    if (left > right || top > bottom) break;

            for (int i = right; i >= left; i--)
                res.add(matrix[bottom][i]);
		    bottom--;
		    if (left > right || top > bottom) break;

            for (int i = bottom; i >= top; i--)
                res.add(matrix[i][left]);
            left++;
		    if (left > right || top > bottom) break;
        }
        return res;
    }
}

复杂度分析:

  • 时间复杂度: O(mn),其中 m 为矩阵的行数,n 为列数。每个元素最多被访问一次。
  • 空间复杂度: O(1),仅使用常数级别的额外空间维护边界变量,输出结果所需的空间不计入额外复杂度。

在这里插入图片描述

解题思路:

在这里插入图片描述

  1. 矩阵分圈处理: 将矩阵视为由多个同心层组成(如最外层、次外层等)。
  2. 四次交换完成单圈旋转: 对于每一层的每个分组(由 i 和 j 确定),通过 ​四次元素交换​ 实现顺时针旋转:
    temp = matrix[i][j] → 保存当前元素
    matrix[i][j] = matrix[n-j-1][i] → 左上角元素被替换为左下角元素
    matrix[n-j-1][i] = matrix[n-i-1][n-j-1] → 左下角元素被替换为右下角元素
    matrix[n-i-1][n-j-1] = matrix[j][n-i-1] → 右下角元素被替换为右上角元素
    matrix[j][n-i-1] = temp → 右上角元素被替换为临时保存的原始左上角元素

Java代码:

class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n / 2; ++i) {
            for (int j = 0; j < (n + 1) / 2; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - j - 1][i];
                matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
                matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
                matrix[j][n - i - 1] = temp;
            }
        }
    }
}

复杂度分析:

  • 时间复杂度: O(n²),每个元素被访问一次,且每次访问仅进行常数次操作。其中 n 是矩阵的边长。
  • 空间复杂度: O(1),仅使用固定数量的变量(如 temp),没有额外开辟存储空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值