等价输入干扰EID(三):“LMI镇稳一下”

等价输入干扰EID(三):“LMI镇稳一下”

reference Robust disturbance rejection based on equivalent-input-disturbance approach (Liu 等, 2013, p. 1)

得有一点EID基础,不懂的或者我没写到的看上面论文去~

前言

假设需要考虑建模的不确定性,不确定性的存在使得分离定理不再适用。因此,状态观测器和状态反馈控制器不能独立设计。为了解决这个问题,我们需要建立一个新的框架,同时设计状态观测器和状态反馈控制器的增益,即学习用利用线性矩阵不等式提出稳定性条件和控制器设计方法。

准备工作

在这里插入图片描述

不确定控制对象(Uncertain Plant):

{ x ˙ ( t ) = [ A + Δ A ( t ) ] x ( t ) + [ B + Δ B ( t ) ] u ( t ) + B d d ( t ) y ( t ) = C x ( t ) \begin{equation} \begin{cases}\dot{x}(t)=[A+\Delta A(t)]x(t)+[B+\Delta B(t)]u(t)+B_dd(t)\\y(t)=Cx(t)\end{cases}\\ \end{equation} {x˙(t)=[A+ΔA(t)]x(t)+[B+ΔB(t)]u(t)+Bdd(t)y(t)=Cx(t)

其中不确定项满足:

[ Δ A ( t ) Δ B ( t ) ] = M E ( t ) [ N 0 N 1 ] \begin{equation} \begin{bmatrix}\Delta A(t)&\Delta B(t)\end{bmatrix}=ME(t)\begin{bmatrix}N_0&N_1\end{bmatrix}\\ \end{equation} [ΔA(t)ΔB(t)]=ME(t)[N0N1]

E ( t ) E(t) E(t) 未知,但满足下述式子:

E T ( t ) E ( t ) ≤ I , ∀ t > 0 \begin{equation} E^\mathrm{T}(t)E(t)\leq I,\quad\forall t>0\\ \end{equation} ET(t)E(t)I,t>0

内部模型(Internal Model):

x ˙ R ( t ) = A R x R ( t ) + B R [ r ( t ) − y ( t ) ] ∣ \begin{equation} \dot{x}_R(t)=A_Rx_R(t)+B_R[r(t)-y(t)]|\\ \end{equation} x˙R(t)=ARxR(t)+BR[r(t)y(t)]

状态观测器(State Observer):

{ x ^ ˙ ( t ) = A x ^ ( t ) + B u f ( t ) + L [ y ( t ) − y ^ ( t ) ] y ^ ( t ) = C x ^ ( t ) \begin{equation} \begin{cases}\dot{\hat x}(t)=A\hat x(t)+Bu_f(t)+L[y(t)-\hat y(t)]\\\hat y(t)=C\hat x(t)\end{cases}\\ \end{equation} {x^˙(t)=Ax^(t)+Buf(t)+L[y(t)y^(t)]y^(t)=Cx^(t)

令观测误差为 Δ x ( t ) = x ( t ) − x ^ ( t ) \Delta x(t)=x(t)-\hat{x}(t) Δx(t)=x(t)x^(t),且 φ ( t ) = [ x ^ T ( t ) Δ x T ( t ) x F T ( t ) x R T ( t ) ] T \varphi(t)=\begin{bmatrix}\hat{x}^\mathrm{T}(t)&\Delta x^\mathrm{T}(t)&x^\mathrm{T}_F(t)&x^\mathrm{T}_R(t)\end{bmatrix}^\mathrm{T} φ(t)=[x^T(t)ΔxT(t)xFT(t)xRT(t)]T 用来描述闭环系统变量,可以整理得到一个关于确定项和不确定项分开的状态空间表达式,如下:
φ ˙ ( t ) = A ^ φ ( t ) + B ^ Γ ( t ) \begin{equation} \dot{\varphi}(t)=\hat{A}\varphi(t)+\hat{B}\Gamma(t)\\ \end{equation} φ˙(t)=A^φ(t)+B^Γ(t)
希望这个关于 φ ( t ) \varphi(t) φ(t) 的空间表达式能够镇定,其中参数如下:
Γ ( t ) = E ( t ) Ψ φ ( t ) Ψ = [ N 0 + N 1 K P N 0 − N 1 C F N 1 K R ] A ^ = [ A + B K P L C 0 B K R 0 A − L C − B C F 0 0 B F B + L C A F + B F C F 0 − B R C − B R C 0 A R ] B ^ = [ 0 M T 0 0 ] T \begin{equation} \begin{gathered} \Gamma(t)=E(t)\Psi\varphi(t) \\ \Psi=\begin{bmatrix}N_0+N_1K_P&N_0&-N_1C_F&N_1K_R\end{bmatrix} \\ \left.\hat A=\left[\begin{matrix}{A+BK_{P}}&{LC}&{0}&{BK_{R}}\\{0}&{A-LC}&{-BC_{F}}&{0}\\{0}&{B_{F}B^{+}LC}&{A_{F}+B_{F}C_{F}}&{0}\\{-B_{R}C}&{-B_{R}C}&{0}&{A_{R}}\\\end{matrix}\right.\right] \\ \hat{B}=\begin{bmatrix}0&M^\mathrm{T}&0&0\end{bmatrix}^\mathrm{T} \end{gathered}\\ \end{equation} Γ(t)=E(t)Ψφ(t)Ψ=[N0+N1KPN0N1CFN1KR]A^= A+BKP00BRCLCALCBFB+LCBRC0BCFAF+BFCF0BKR00AR B^=[0MT00]T

LMI镇定和控制器参数设计

引理

引理1(Schur补):对于给定的对称矩阵:

Σ = [ Σ 11 Σ 12 Σ 12 T Σ 22 ] \Sigma=\begin{bmatrix}\Sigma_{11}&\Sigma_{12}\\\Sigma_{12}^\mathrm{T}&\Sigma_{22}\end{bmatrix} Σ=[Σ11Σ12TΣ12Σ22]

下述条件等价:

  1. Σ < 0 \Sigma<0 Σ<0

  2. Σ 11 < 0 \Sigma_{11}<0 Σ11<0 Σ 22 − Σ 12 T Σ 11 − 1 Σ 12 < 0 \Sigma_{22}-\Sigma_{12}^T\Sigma_{11}^{-1}\Sigma_{12}<0 Σ22Σ12TΣ111Σ12<0

  3. Σ 22 < 0 \Sigma_{22}<0 Σ22<0 Σ 11 − Σ 12 T Σ 22 − 1 Σ 12 < 0 \Sigma_{11}-\Sigma_{12}^T\Sigma_{22}^{-1}\Sigma_{12}<0 Σ11Σ12TΣ221Σ12<0.

引理2:对于 rank ⁡ ( Π ) = p \operatorname{rank}(\Pi)=p rank(Π)=p 的给定矩阵 Π ∈ R p × n \Pi\in\mathbb{R}^{p\times n} ΠRp×n ,存在一个矩阵 X ˉ ∈ R p × p \bar{X}\in\mathbb{R}^{p\times p} XˉRp×p ,对于任意 X ∈ R p × p X\in\mathbb{R}^{p\times p} XRp×p ,当且仅当 X 可分解为

X = W X ˉ W T , X ˉ = d i a g { X ˉ 11 , X ˉ 22 } X=W\bar{X}W^\mathrm{T},\quad\bar{X}=\mathrm{diag}\{\bar{X}_{11},\bar{X}_{22}\} X=WXˉWT,Xˉ=diag{Xˉ11,Xˉ22}

使得 Π X = X ˉ Π \Pi X=\bar{X}\Pi ΠX=XˉΠ

引理3:设 Ω 0 ( x ) \Omega_0(x) Ω0(x) Ω 1 ( x ) \Omega_1(x) Ω1(x) R n \mathbb{R}^n Rn 上的二次矩阵函数,且对于所有 x ∈ R n − { 0 } x\in\mathbb{R}^n-\{0\} xRn{0} Ω 0 ( x ) ≤ 0 \Omega_0(x)\leq0 Ω0(x)0 。那么对于所有 x ∈ R n − { 0 } x\in\mathbb{R}^n-\{0\} xRn{0} ,当且仅当存在一个 ε ≥ 0 \varepsilon\geq0 ε0 ,使得 Ω 0 ( x ) − ε Ω 1 ( x ) < 0 \Omega_0(x)-\varepsilon\Omega_1(x)<0 Ω0(x)εΩ1(x)<0 成立时, Ω 0 ( x ) < 0 \Omega_0(x)<0 Ω0(x)<0

定理1:对于给定的参数 α \alpha α β \beta β ,如果存在对称正定矩阵 X 1 , X 11 , X 22 , X 3 , X 4 X_1,X_{11},X_{22},X_3,X_4 X1,X11,X22,X3,X4 ,以及适当的矩阵 W 1 , W 2 , W 3 W_{1},W_{2},W_{3} W1,W2,W3,且以下 LMI 可行,则系统 (20) 在控制规律 (24) 作用下是鲁棒稳定的

LMI式:

[ Φ 11 W 2 C 0 Φ 14 0 Φ 16 ∗ Φ 22 Φ 23 − X 2 C T B R T M X 2 N 0 T ∗ ∗ Φ 33 0 0 − X 3 N 1 T ∗ ∗ ∗ Φ 44 0 β W 3 T N 1 T ∗ ∗ ∗ ∗ − I 0 ∗ ∗ ∗ ∗ ∗ − I ] < 0 \begin{equation} \begin{bmatrix}\Phi_{11}&W_2C&0&\Phi_{14}&0&\Phi_{16}\\*&\Phi_{22}&\Phi_{23}&-X_2C^\mathrm{T}B_R^\mathrm{T}&M&X_2N_0^\mathrm{T}\\*&*&\Phi_{33}&0&0&-X_3N_1^\mathrm{T}\\*&*&*&\Phi_{44}&0&\beta W_3^\mathrm{T}N_1^\mathrm{T}\\*&*&*&*&-I&0\\*&*&*&*&*&-I\end{bmatrix}<0\\ \end{equation} Φ11W2CΦ220Φ23Φ33Φ14X2CTBRT0Φ440M00IΦ16X2N0TX3N1TβW3TN1T0I <0

其中
Φ 11 = α A X 1 + α X 1 A T + α B W 1 + α W 1 T B T Φ 14 = β B W 3 − α X 1 C T B R T Φ 16 = α X 1 N 0 T + α W 1 T N 1 T Φ 22 = A X 2 + X 2 A T − W 2 C − C T W 2 T Φ 23 = − B C F X 3 + C T W 2 T B + T B F T Φ 33 = ( A F + B F C F ) X 3 + X 3 ( A F + B F C F ) T Φ 44 = β A R X 4 + β X 4 A R T \begin{aligned} &\Phi_{11} =\alpha AX_{1}+\alpha X_{1}A^{\mathrm{T}}+\alpha BW_{1}+\alpha W_{1}^{\mathrm{T}}B^{\mathrm{T}} \\ &\Phi_{14} =\beta BW_{3}-\alpha X_{1}C^{\mathrm{T}}B_{R}^{\mathrm{T}} \\ &\Phi_{16} =\alpha X_1N_0^\mathrm{T}+\alpha W_1^\mathrm{T}N_1^\mathrm{T} \\ &\Phi_{22} =AX_2+X_2A^\mathrm{T}-W_2C-C^\mathrm{T}W_2^\mathrm{T} \\ &\Phi_{23} =-BC_{F}X_{3}+C^{\mathrm{T}}W_{2}^{\mathrm{T}}B^{+T}B_{F}^{\mathrm{T}} \\ &\Phi_{33} =(A_F+B_FC_F)X_3+X_3(A_F+B_FC_F)^\mathrm{T} \\ &\Phi_{44} =\beta A_{R}X_{4}+\beta X_{4}A_{R}^{\mathrm{T}} \end{aligned} Φ11=αAX1+αX1AT+αBW1+αW1TBTΦ14=βBW3αX1CTBRTΦ16=αX1N0T+αW1TN1TΦ22=AX2+X2ATW2CCTW2TΦ23=BCFX3+CTW2TB+TBFTΦ33=(AF+BFCF)X3+X3(AF+BFCF)TΦ44=βARX4+βX4ART

X 2 X_2 X2 的奇异值分解为:

X 2 = [ V 1 V 2 ] [ X 11 0 0 X 22 ] [ V 1 T V 2 T ] X_2=\begin{bmatrix}V_1&V_2\end{bmatrix}\begin{bmatrix}X_{11}&0\\0&X_{22}\end{bmatrix}\begin{bmatrix}V_1^\mathrm{T}\\V_2^\mathrm{T}\end{bmatrix} X2=[V1V2][X1100X22][V1TV2T]

此外,状态反馈控制器和观测器的增益分别为:

K P = W 1 X 1 − 1 K R = W 3 X 4 − 1 L = W 2 U S X 11 − 1 S − 1 U T \begin{aligned} &K_{P}=W_{1}X_{1}^{-1} &\quad K_{R}=W_{3}X_{4}^{-1} &\quad L=W_{2}USX_{11}^{-1}S^{-1}U^{\mathrm{T}}\\ \end{aligned} KP=W1X11KR=W3X41L=W2USX111S1UT

定理1证明

1.选择lyapunov函数为:

V ( t ) = φ T ( t ) P φ ( t ) \begin{equation} V(t)=\varphi^\mathrm{T}(t)P\varphi(t)\\ \end{equation} V(t)=φT(t)(t)

其中 P = d i a g { 1 α P 1 , P 2 , P 3 1 β , P 4 } P=\mathrm{diag}\{\frac{1}{\alpha}P_{1},P_{2},P_{3}\frac{1}{\beta},P_{4}\} P=diag{α1P1P2P3β1P4} ,内部各项都是待定的正定矩阵。

2.对(9)式求导:

V ˙ ( t ) = φ T ( t ) P φ ˙ ( t ) + φ ˙ T ( t ) P φ ( t ) \begin{equation} \dot{V}(t)=\varphi^\mathrm{T}(t)P\dot{\varphi}(t)+\dot{\varphi}^\mathrm{T}(t)P\varphi(t)\\ \end{equation} V˙(t)=φT(t)Pφ˙(t)+φ˙T(t)(t)

根据式(6)可以将式(7)化为下式 (8), ∗ * 就是前面一个矩阵的转置,下述中就是 ( P A ^ ) T (P\hat{A})^T (PA^)T

V ˙ ( t ) = φ T ( t ) ( P A ^ + ∗ ) φ ( t ) + 2 φ T ( t ) P B ^ φ ( t ) \begin{equation} \dot{\mathrm{V}}(t)=\varphi^\mathrm{T}(t)(P\hat{A}+*)\varphi(t)+2\varphi^\mathrm{T}(t)P\hat{B}\varphi(t)\\ \end{equation} V˙(t)=φT(t)(PA^+)φ(t)+2φT(t)PB^φ(t)

将式 ( P A ^ + ∗ ) (P\hat{A}+*) (PA^+) 合并成矩阵形式:

[ H 11 H 12 0 H 14 ∗ H 22 H 23 H 24 ∗ ∗ H 33 0 ∗ ∗ ∗ H 44 ] \begin{bmatrix}H_{11}&H_{12}&0&H_{14}\\*&H_{22}&H_{23}&H_{24}\\*&*&H_{33}&0\\*&*&*&H_{44}\end{bmatrix} H11H12H220H23H33H14H240H44

其中

H 11 = 1 α ( P 1 A + A T P 1 + P 1 B K P + K P T B T P 1 ) H 12 = 1 α P 1 L C H 14 = 1 α P 1 B K R − 1 β C T B R T P 4 H 22 = P 2 A + A T P 2 − P 2 L C − C T L T P 2 H 23 = − P 2 B C F + C T L T B + T B F T P 3 H 24 = − 1 β C T B R T P 4 H 33 = P 3 ( A F + B F C F ) + ( A F + B F C F ) T P 3 H 44 = 1 β ( P 4 A R + A R T P 4 ) \begin{aligned} &H_{11} =\frac1\alpha(P_1A+A^\mathrm{T}P_1+P_1BK_P+K_P^\mathrm{T}B^\mathrm{T}P_1) \\ &H_{12} =\frac1\alpha P_1LC \\ &H_{14} =\frac{1}{\alpha}P_{1}BK_{R}-\frac{1}{\beta}C^{\mathrm{T}}B_{R}^{\mathrm{T}}P_{4} \\ &H_{22} =P_{2}A+A^{\mathrm{T}}P_{2}-P_{2}LC-C^{\mathrm{T}}L^{\mathrm{T}}P_{2} \\ &H_{23} =-P_2BC_F+C^\mathrm{T}L^\mathrm{T}B^{+T}B_F^\mathrm{T}P_3 \\ &H_{24} =-\frac1\beta C^\mathrm{T}B_{R}^\mathrm{T}P_{4} \\ &H_{33} =P_3(A_F+B_FC_F)+(A_F+B_FC_F)^\mathrm{T}P_3 \\ &H_{44} =\frac{1}{\beta}(P_{4}A_{R}+A_{R}^{\mathrm{T}}P_{4}) \end{aligned} H11=α1(P1A+ATP1+P1BKP+KPTBTP1)H12=α1P1LCH14=α1P1BKRβ1CTBRTP4H22=P2A+ATP2P2LCCTLTP2H23=P2BCF+CTLTB+TBFTP3H24=β1CTBRTP4H33=P3(AF+BFCF)+(AF+BFCF)TP3H44=β1(P4AR+ARTP4)

3.式(11)还是非线性矩阵,需要将其转化成大的矩阵形式,因此构造如下:

S = V ˙ ( t ) − [ Γ T ( t ) Γ ( t ) − φ T ( t ) Ψ T Ψ φ ( t ) ] = [ φ T ( t ) Γ T ( t ) ] Ξ [ φ ( t ) Γ ( t ) ] \begin{equation} \begin{aligned}S=\dot{V}(t)-[\Gamma^\mathrm{T}(t)\Gamma(t)-\varphi^\mathrm{T}(t)\Psi^\mathrm{T}\Psi\varphi(t)]=\begin{bmatrix}\varphi^\mathrm{T}(t)&\Gamma^\mathrm{T}(t)\end{bmatrix}\Xi\begin{bmatrix}\varphi(t)\\\Gamma(t)\end{bmatrix}\end{aligned}\\ \end{equation} S=V˙(t)[ΓT(t)Γ(t)φT(t)ΨTΨφ(t)]=[φT(t)ΓT(t)]Ξ[φ(t)Γ(t)]

为什么构造这个函数呢?因为需要将Lyapunov函数内的非线性项一起结合成为一个大矩阵,就是图中的 Ξ \Xi Ξ ,这样子若S负定,如果 V ˙ ( t ) \dot{V}(t) V˙(t) 减去的一坨是半正定或正定,那么就能保证 V ˙ ( t ) \dot{V}(t) V˙(t) 是负定的了,就间接得到了我们想要的结果。

其中

Ξ = [ H 11 H 12 0 H 14 0 ∗ H 22 H 23 H 24 P 2 M ∗ ∗ H 33 0 0 ∗ ∗ ∗ H 44 0 ∗ ∗ ∗ ∗ − I ] + [ Ψ T 0 ] [ Ψ 0 ] \begin{equation} \Xi=\begin{bmatrix}H_{11}&H_{12}&0&H_{14}&0\\*&H_{22}&H_{23}&H_{24}&P_{2}M\\*&*&H_{33}&0&0\\*&*&*&H_{44}&0\\*&*&*&*&-I\end{bmatrix}+\begin{bmatrix}\Psi^\mathrm{T}\\0\end{bmatrix}\begin{bmatrix}\Psi&0\end{bmatrix}\\ \end{equation} Ξ= H11H12H220H23H33H14H240H440P2M00I +[ΨT0][Ψ0]

这个需要自己反过来推一下,我在纸上推过了确实能得到S的二次型上述表达式;

继续由于 Ξ \Xi Ξ 还不是我们想要的LMI,其中还是有非线性项,因此我们需要用 引理1(Schur补) 将其包装成为维度更高的矩阵。

4.令

Σ 11 = [ H 11 H 12 0 H 14 0 ∗ H 22 H 23 H 24 P 2 M ∗ ∗ H 33 0 0 ∗ ∗ ∗ H 44 0 ∗ ∗ ∗ ∗ − I ] , Σ 22 = − I , Σ 12 = [ Ψ T 0 ] \Sigma_{11}=\begin{bmatrix}H_{11}&H_{12}&0&H_{14}&0\\*&H_{22}&H_{23}&H_{24}&P_{2}M\\*&*&H_{33}&0&0\\*&*&*&H_{44}&0\\*&*&*&*&-I\end{bmatrix},\Sigma_{22}=-I,\Sigma_{12}=\begin{bmatrix}\Psi^\mathrm{T}\\0\end{bmatrix} Σ11= H11H12H220H23H33H14H240H440P2M00I ,Σ22=I,Σ12=[ΨT0]

则有

Σ = [ H 11 H 12 0 H 14 0 N 0 T + K P T N 1 T ∗ H 22 H 23 H 24 P 2 M N 0 T ∗ ∗ H 33 0 0 − C F N 1 T ∗ ∗ ∗ H 44 0 K R T N 1 T ∗ ∗ ∗ ∗ − I 0 ∗ ∗ ∗ ∗ ∗ − I ] \begin{equation} \Sigma=\begin{bmatrix}H_{11}&H_{12}&0&H_{14}&0&N_0^\mathrm{T}+K_P^\mathrm{T}N_1^\mathrm{T}\\*&H_{22}&H_{23}&H_{24}&P_2M&N_0^\mathrm{T}\\*&*&H_{33}&0&0&-C_FN_1^\mathrm{T}\\*&*&*&H_{44}&0&K_R^\mathrm{T}N_1^\mathrm{T}\\*&*&*&*&-I&0\\*&*&*&*&*&-I\end{bmatrix}\\ \end{equation} Σ= H11H12H220H23H33H14H240H440P2M00IN0T+KPTN1TN0TCFN1TKRTN1T0I

Ξ < 0 \Xi<0 Ξ<0 等价于 Σ < 0 \Sigma<0 Σ<0 ,在 Σ \Sigma Σ 两边左右乘 Π \Pi Π ,其中 Π \Pi Π 的表达式如下:

Π = diag ⁡ { α P 1 − 1 , P 2 − 1 , P 3 − 1 , β P 4 − 1 , I , I } = diag ⁡ { α X 1 , X 2 , X 3 , β X 4 , I , I } \begin{equation} \begin{aligned}\Pi&=\operatorname{diag}\{\alpha P_1^{-1},P_2^{-1},P_3^{-1},\beta P_4^{-1},I,I\}\\&=\operatorname{diag}\{\alpha X_1,X_2,X_3,\beta X_4,I,I\}\end{aligned}\\ \end{equation} Π=diag{αP11,P21,P31,βP41,I,I}=diag{αX1,X2,X3,βX4,I,I}

式(15)其实是为了初步消除矩阵中的非线性项,例如 P 1 B K P P_1BK_P P1BKP 左右两边同时有变量,为非线性项,左右乘 P 1 − 1 P_1^{-1} P11 后的式子为 B K P P 1 − 1 BK_PP_1^{-1} BKPP11 ,后两项可以看成一个LMI变量,这样就可以消去非线性项。

5.显而易见 Π \Pi Π 为正定矩阵,不改变原有矩阵的正定性,因此带入进去得到:

Π Σ Π = [ Φ ~ 11 L C X 2 0 Φ ~ 14 0 Φ ~ 16 ∗ Φ ~ 22 Φ ~ 23 − X 2 C T B R T M X 2 N 0 T ∗ ∗ Φ ~ 33 0 0 − X 3 C F N 1 T ∗ ∗ ∗ Φ ~ 44 0 β X 4 K R T N 1 T ∗ ∗ ∗ ∗ − I 0 ∗ ∗ ∗ ∗ ∗ − I ] \begin{equation} \Pi\Sigma\Pi=\begin{bmatrix}\tilde{\Phi}_{11}&LCX_{2}&0&\tilde{\Phi}_{14}&0&\tilde{\Phi}_{16}\\*&\tilde{\Phi}_{22}&\tilde{\Phi}_{23}&-X_{2}C^\mathrm{T}B_{R}^\mathrm{T}&M&X_{2}N_{0}^\mathrm{T}\\*&*&\tilde{\Phi}_{33}&0&0&-X_{3}C_{F}N_{1}^\mathrm{T}\\*&*&*&\tilde{\Phi}_{44}&0&\beta X_{4}K_{R}^\mathrm{T}N_{1}^\mathrm{T}\\*&*&*&*&-I&0\\*&*&*&*&*&-I\end{bmatrix}\\ \end{equation} ΠΣΠ= Φ~11LCX2Φ~220Φ~23Φ~33Φ~14X2CTBRT0Φ~440M00IΦ~16X2N0TX3CFN1TβX4KRTN1T0I

其中

Φ ~ 11 = α ( A X 1 + X 1 A T + B K P X 1 + X 1 K P T B T ) Φ ~ 14 = β B K R X 4 − α X 1 C T B R T Φ ~ 16 = α X 1 N 0 T + α X 1 K P T N 1 T Φ ~ 22 = A X 2 + X 2 A T − L C X 2 − X 2 C T L T Φ ~ 23 = − B C F X 3 + X 2 C T L T B + T B F T Φ ~ 33 = ( A F + B F C F ) X 3 + X 3 ( A F + B F C F ) T Φ ~ 44 = β ( A R X 4 + X 4 A R T ) \begin{aligned} &\tilde{\Phi}_{11} =\alpha(AX_{1}+X_{1}A^{\mathrm{T}}+BK_{P}X_{1}+X_{1}K_{P}^{\mathrm{T}}B^{\mathrm{T}}) \\ &\tilde{\Phi}_{14} =\beta BK_{R}X_{4}-\alpha X_{1}C^{\mathrm{T}}B_{R}^{\mathrm{T}} \\ &\tilde{\Phi}_{16} =\alpha X_{1}N_{0}^{\mathrm{T}}+\alpha X_{1}K_{P}^{\mathrm{T}}N_{1}^{\mathrm{T}} \\ &\tilde{\Phi}_{22} =AX_{2}+X_{2}A^\mathrm{T}-LCX_{2}-X_{2}C^\mathrm{T}L^\mathrm{T} \\ &\tilde{\Phi}_{23} =-BC_{F}X_{3}+X_{2}C^{\mathrm{T}}L^{\mathrm{T}}B^{+T}B_{F}^{\mathrm{T}} \\ &\tilde{\Phi}_{33} =(A_F+B_FC_F)X_3+X_3(A_F+B_FC_F)^\mathrm{T} \\ &\tilde{\Phi}_{44} =\beta(A_{R}X_{4}+X_{4}A_{R}^{\mathrm{T}}) \end{aligned} Φ~11=α(AX1+X1AT+BKPX1+X1KPTBT)Φ~14=βBKRX4αX1CTBRTΦ~16=αX1N0T+αX1KPTN1TΦ~22=AX2+X2ATLCX2X2CTLTΦ~23=BCFX3+X2CTLTB+TBFTΦ~33=(AF+BFCF)X3+X3(AF+BFCF)TΦ~44=β(ARX4+X4ART)

注意到大部分非线性项已经消去,但是仍有部分未消去,比如 L C X 2 LCX_2 LCX2 ,这这时候想办法去将前两项位置交换,就可以把待定矩阵放到右边凑成一个LMI变量,就消去了非线性。

6.假设C能被奇异值分解为:

C = U [ S   0 ] V T C=U[S~0]V^\mathrm{T} C=U[S 0]VT

其中S为半正定阵,U和V为酉阵(即满足 U U T = I UU^T=I UUT=I ,V同理 ),令 V = [ V 1 V 2 ] V=\begin{bmatrix}V_1&V_2\end{bmatrix} V=[V1V2]

X 2 X_2 X2 的奇异值分解为:

X 2 = [ V 1 V 2 ] [ X 11 0 0 X 22 ] [ V 1 T V 2 T ] X_2=\begin{bmatrix}V_1&V_2\end{bmatrix}\begin{bmatrix}X_{11}&0\\0&X_{22}\end{bmatrix}\begin{bmatrix}V_1^\mathrm{T}\\V_2^\mathrm{T}\end{bmatrix}\\ X2=[V1V2][X1100X22][V1TV2T]

引理2 找到一个满足 C X 2 = X ˉ 2 C CX_2=\bar{X}_2C CX2=Xˉ2C X ˉ 2 \bar{X}_2 Xˉ2 ,即 X ˉ 2 = U S X 11 S − 1 U T \bar{X}_2=USX_{11}S^{-1}U^\mathrm{T} Xˉ2=USX11S1UT

接着,令

K P X 1 = W 1 , K R X 4 = W 3 , L X 2 ˉ = W 2 K_PX_1=W_1,\quad K_RX_4=W_3,\quad L\bar{X_2}=W_2 KPX1=W1,KRX4=W3,LX2ˉ=W2

这样就用新的LMI变量代替了两个待定矩阵的乘积,整个矩阵就变成了线性矩阵,不包含非线性项。

7.由式(3)得到:

Γ T ( t ) Γ ( t ) ≤ φ T ( t ) Ψ T Ψ φ ( t ) \Gamma^\mathrm{T}(t)\Gamma(t)\leq\varphi^\mathrm{T}(t)\Psi^\mathrm{T}\Psi\varphi(t) ΓT(t)Γ(t)φT(t)ΨTΨφ(t)

再由 引理3 得到系统的稳定。

  • 27
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值