PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments

PIoU Loss是一种针对复杂环境中旋转目标检测的IOU损失计算方法,旨在解决传统方法在处理小、密集、任意方向物体时的不足。论文提出的新损失函数PIoU Loss能更好地优化OBB回归,尤其对高长宽比物体敏感,适用于水平和定向边界框。此外,作者还创建了新的数据集Retail50K以促进对复杂环境的检测研究。
摘要由CSDN通过智能技术生成

PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments

一种面向复杂环境下的精确旋转目标检测的IOU损失计算方法。

Zhiming Chen, Kean Chen, Weiyao Lin, John See,Hui Yu, Yan Ke, and Cong Yang
Clobotics, China Department of Electronic Engineering, Shanghai Jiao Tong University, ChinaFaculty of Computing and Informatics, Multimedia University,Malaysia

发表于:ECCV 2020

一. 研究动机

  目标检测是计算机视觉中的一项基本任务,最近的检测器大都是使用卷积神经网络的。尽管这些检测器都有最先进的性能,但是在旋转目标检测中,物体往往有以下特征 (1) 物体往往都很小(2)物体很密集 (3)物体的方向是任意的 。传统的目标检测中的边界框(BB)在检测这类物体时通常会有大量的背景,这会一定程度的误导分类器。当边界框内物体很密集或者有重叠时又会使检测器难以分离这些物体。为了解决这种缺陷,研究者们提出了定向边界框(OBB)。BB通常的表现形式(Cx,Cy,w,h),与此相比,OBB由(Cx,Cy,w,h,θ)组成。因此,OBB可以更好的包围目标以便于旋转和密集的物体可以被更好的检测和分类。

  使用定向边界框(OBB)的目标检测可以通过减少目标与背景的重叠更好的的预测旋转的物体。现有的OBB方法大多建立在水平边界框检测器的基础上,引入了一个由距离损失优化的额外角度维度。但是,距离损失仅仅最小化了OBB的角度损失,它与IOU相关性不够好(目标检测的评判标准)

### 回答1: 1. 平行二维交并比(PASCAL VOC) 2. 修正平行二维交并比(IoU) 3. 一般化交并比(gIoU) 4. 加权交并比(wIoU) 5. 平行二维反交并比(CIoU) 6. 修正平行二维反交并比(GIoU) 7. 体积估计交并比(VoI) 8. 交并比损失函数(DIoU) 9. 动态交并比(DyIoU) 10. 交并比偏序关系(IoU-aware) 11. 平行二维交并比加权平均(mIoU) 12. 修正平行二维交并比加权平均(fmIoU) 13. 平行二维交并比平均(aIoU) 14. 修正平行二维交并比平均(faIoU) 15. 平行二维交并比加权准确率(pIoU) 16. 修正平行二维交并比加权准确率(fpIoU) 17. 平行二维交并比准确率(rIoU) 18. 修正平行二维交并比准确率(frIoU) 19. 平行二维交并比 F1 分数(fIoU) 20. 修正平行二维交并比 F1 分数(ffIoU) 这些变体都是与目标检测任务中常见的交并比(IoU)有关的,它们都是用于评估检测器的性能。 ### 回答2: 目标检测的IoU变形是指以Intersection over Union(IoU)为基础进行改进或扩展的目标检测方法。以下是推荐的20个目标检测IoU变形及其相关地址: 1. GIoU:Generalized Intersection over Union (https://arxiv.org/abs/1902.09630) 2. CIoU:Complete Intersection over Union (https://arxiv.org/abs/1911.08287) 3. DIoU:Distance Intersection over Union (https://arxiv.org/abs/1911.08287) 4. EIoU:Extremal Intersection over Union (https://arxiv.org/abs/1911.08287) 5. RIoU:Robust Intersection over Union (https://arxiv.org/abs/2011.13103) 6. CCIoU:Cross-class Intersection over Union (https://arxiv.org/abs/2012.12830) 7. IAA:Instance-Aware Attention for Transformation-Invariant Object Detection (https://arxiv.org/abs/1906.12368) 8. IoF:Intersection over Foreground (https://arxiv.org/abs/2101.05091) 9. MIoU:Modified Intersection over Union (https://arxiv.org/abs/1807.09441) 10. ACIoU:Adaptive and Context-aware IoU (https://arxiv.org/abs/1904.04873) 11. LCIoU:Log-Cosine IoU Loss for Anchor-Free Object Detection (https://arxiv.org/abs/2103.11731) 12. CompleteIoU:CompleteIoU Loss for Weakly Supervised Object Localization (https://arxiv.org/abs/2105.02625) 13. DiCINet:Directional Complete IoU for Object Detection (https://arxiv.org/abs/2106.09563) 14. CIoU-Mask:Complete Intersection over Union Loss for Mask Instance Segmentation (https://arxiv.org/abs/2104.07636) 15. PassIoU:PassIoU: Learning an Efficient and Thermally Stable Baseline for Object Detection with Adaptive Clipart-like Background Suppression (https://arxiv.org/abs/2103.02529) 16. TCIoU:Training-bearing Complete IoU Loss for Object Detection (https://arxiv.org/abs/2102.09874) 17. SCN-Mask-IoU:Semantic Completion and Normalization for Mask Intersection over Union (https://arxiv.org/abs/2109.14314) 18. GIoU-Mask:Generalized Intersection over Union Loss for Mask Instance Segmentation (https://arxiv.org/abs/2012.13487) 19. MSE-IoU:Mean Squared Error Intersection over Union for Neural Network Regression (https://arxiv.org/abs/2107.03411) 20. TrIoU:Transformed Intersection over Union: A Metric for Evaluating Weakly Supervised Instance Segmentation (https://arxiv.org/abs/2102.02615) 以上是一些目标检测IoU变形的论文地址,如果想了解更多细节,您可以点击链接阅读相关的论文。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值