Learning to Rank Proposals for Object Detection

该博客讨论了针对目标检测中非极大值抑制(NMS)问题的研究,提出了一种学习排序(LTR)模型,通过预测基于IoU的排名分数来改进NMS。文章介绍了排名损失和配对采样策略,以及如何将这些应用于目标检测器以提高性能。实验表明,这种LTR模型在多个基准测试中提升了目标检测的准确性。
摘要由CSDN通过智能技术生成

Learning to Rank Proposals for Object Detection

学习为目标检测排列提议

Zhiyu Tan,Xuecheng Nie, Qi Qian,Nan Li,Hao Li
Alibaba Group,Beijing,China
Department of Electrical and Computer Engineering,National University of Singapore,Singapore

发表于: ICCV,2019

一、 研究动机

  现有的目标检测模型严重的依赖非最大抑制 (NMS) 算法,通过抑制标准去除重复的边界框,抑制标准的定义来自于分类得出的客观性回归产生的定位,这两者都是启发式设计的,NMS的功效严重的影响着最终的检测结果。 然而,这些现有的抑制标准无法与消除这些候选框过程中的候选框的等级明确关联,如下图所示。候选等级不准确将导致错误的消除并降低目标检测器的性能。 仍然需要改进抑制标准以促进目标检测器的性能。

  为了解决上述问题,在本文中,我们提出了一种新颖的学习排序(LTR)模型,通过学习过程中产生抑制排序,从而促进候选生成并提高检测性能。 特别地,我们定义了一个基于 IoU 的排名分数来表示 NMS 步骤中候选框的排名,其中排名高的候选框将被保留,排名分数低的将被淘汰。 我们设计了一个轻量级网络来预测排名分数。我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值