Learning to Rank Proposals for Object Detection
学习为目标检测排列提议
Zhiyu Tan,Xuecheng Nie, Qi Qian,Nan Li,Hao Li
Alibaba Group,Beijing,China
Department of Electrical and Computer Engineering,National University of Singapore,Singapore
发表于: ICCV,2019
一、 研究动机
现有的目标检测模型严重的依赖非最大抑制 (NMS) 算法,通过抑制标准去除重复的边界框,抑制标准的定义来自于分类得出的客观性或回归产生的定位,这两者都是启发式设计的,NMS的功效严重的影响着最终的检测结果。 然而,这些现有的抑制标准无法与消除这些候选框过程中的候选框的等级明确关联,如下图所示。候选等级不准确将导致错误的消除并降低目标检测器的性能。 仍然需要改进抑制标准以促进目标检测器的性能。
为了解决上述问题,在本文中,我们提出了一种新颖的学习排序(LTR)模型,通过学习过程中产生抑制排序,从而促进候选生成并提高检测性能。 特别地,我们定义了一个基于 IoU 的排名分数来表示 NMS 步骤中候选框的排名,其中排名高的候选框将被保留,排名分数低的将被淘汰。 我们设计了一个轻量级网络来预测排名分数。我们