鹿长野
码龄5年
关注
提问 私信
  • 博客:6,985
    6,985
    总访问量
  • 6
    原创
  • 164,682
    排名
  • 46
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2019-10-28
博客简介:

布灵布灵

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    76
    当月
    4
个人成就
  • 获得54次点赞
  • 内容获得33次评论
  • 获得90次收藏
  • 代码片获得152次分享
创作历程
  • 4篇
    2024年
  • 2篇
    2023年
成就勋章
兴趣领域 设置
  • 人工智能
    深度学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
搜TA的内容
搜索 取消

Exploring Channel-Aware Typical Features for Out-of-Distribution Detection

相反,落在低概率区域的特征定义为异常特征,极高的特征会导致对OOD数据预测的过度自信,极低的特征会导致预测ID数据的信心不足。现有的基于典型特征的OOD检测方法隐含着一个假设:每个通道的典型特征集的比例是固定的,但是每个通道对OOD检测的贡献不同,所有通道采用固定比例会使得OOD检测性能降低。探索通道感知的典型特征对于更好的分离ID和OOD数据至关重要,首先,从平均值和标准差的全局典型集合校准通道级典型集合来获得。,从而获得通道感知典型特征,最后,利用通道感知的典型特征来计算OOD检测的能量分数。
原创
发布博客 2024.06.06 ·
267 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

ImageNet-1k

发布资源 2024.06.06 ·
zip

Generalized Out-of-Distribution Detection: A Survey

注意这种方式与信心校准不同,它采用了更温和的T,而校准更关注表达ID样本真实的正确概率,ODIN的评分最大化了ID和OOD样本之间的差异,可能从预测信心的角度看不再有意义。与众不同的是,它产生具有指定置信水平的预测区间,超越了单纯点估计的局限性。在OOD检测的场景中,适形预测框架变得特别有见地:由适形预测方法生成的更宽的预测区间或更低的置信水平可以作为OOD数据的指标。在多类别设定下,典型的OOD检测是开集识别问题(第4节),在类别空间Y中精确分类分布内的测试样本,并且丢弃语义不被Y所支持的分布外样本。
原创
发布博客 2024.06.04 ·
922 阅读 ·
23 点赞 ·
0 评论 ·
18 收藏

Swin-Unet网络预训练模型,swin-tiny-patch-window7-224.pth

发布资源 2024.04.27 ·
zip

终端快速进入D盘的两种方法

【代码】终端快速进入D盘的两种方法。
原创
发布博客 2024.04.25 ·
1102 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

TransUnet复现过程(详细过程)

TransUnet复现,详细教程
原创
发布博客 2024.04.25 ·
3743 阅读 ·
20 点赞 ·
32 评论 ·
56 收藏

TransUnet复现,完整代码(附实现说明)

发布资源 2024.04.25 ·
zip

ui文件转py文件【命令行的方式】

ui文件转py文件。
原创
发布博客 2023.03.13 ·
278 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

no module named ‘pyside2‘

直接安装会比较慢,可以选择使用国内安装源。
原创
发布博客 2023.03.13 ·
446 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏