
Exploring Channel-Aware Typical Features for Out-of-Distribution Detection
相反,落在低概率区域的特征定义为异常特征,极高的特征会导致对OOD数据预测的过度自信,极低的特征会导致预测ID数据的信心不足。现有的基于典型特征的OOD检测方法隐含着一个假设:每个通道的典型特征集的比例是固定的,但是每个通道对OOD检测的贡献不同,所有通道采用固定比例会使得OOD检测性能降低。探索通道感知的典型特征对于更好的分离ID和OOD数据至关重要,首先,从平均值和标准差的全局典型集合校准通道级典型集合来获得。,从而获得通道感知典型特征,最后,利用通道感知的典型特征来计算OOD检测的能量分数。













