牛客周赛 Round 28(A,B,C,D,E,F)

文章概述了几场小红比赛中的题目,涉及简单的求和、字符串操作、炸砖块问题、区间统计(易和难)、数组特性分析等,强调了不同题目中使用的算法技巧,如直接计算、双指针、二分查找、离散化树状数组等。
摘要由CSDN通过智能技术生成

比赛链接
B站官方讲解

这场乍一看好像比较难,实际上还行。A送分的,BC思考一下可以直接出,D是双指针或者二分,E是数学,F是离散化+树状数组。BCD三十分钟出了。E看错题了,后来也写出来了。F比较麻烦,写了三十多分钟。


A 小红的新周赛

思路:

这题纯送分,读入六个数求和即可,看一眼直接过了,没写代码。


B 小红的字符串

思路:

因为只要长度为2的子字符串,所以可以直接 O ( n ) O(n) O(n) 暴力枚举所有的子字符串,把所有的子字符串放到multiset之后直接输出即可(multiset中元素可重复,元素有序)。
题解做法是开一个字符串数组,然后用sort直接排序,也差不多。

code:

#include <iostream>
#include <cstdio>
#include <set>
#include <cstring>
using namespace std;

multiset<string> s;
string str;

int main(){
	cin>>str;
	for(int i=0;i<=str.length()-2;i++)
		s.insert(str.substr(i,2));
	for(auto &x:s)
		cout<<x<<endl;
	return 0;
}

sort版:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=1e5+5;

string str,s[maxn];

int main(){
	cin>>str;
	for(int i=0;i<=str.length()-2;i++)
		s[i]=str.substr(i,2);
	sort(s,s+str.length()-2+1);
	for(int i=0;i<=str.length()-2;i++)
		cout<<s[i]<<endl;
	return 0;
}

C 小红的炸砖块

思路:

有砖块的地方才能炸,炸完之后,最上面会留空。反过来说,给定坐标,相当于选定一列,尝试增加它的留空个数。给出x y,如果第y列留空的个数<x,那么x就在有砖块的位置,就可以给这一列留空数+1。输出的时候也是看留空数就行了。

code:

#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=1005;

int n,m,k;
int a[maxn];

int main(){
	cin>>n>>m>>k;
//	for(int i=1;i<=m;i++)
//		a[i]=n;
	for(int i=1,x,y;i<=k;i++){
		cin>>x>>y;
		if(x>a[y])a[y]++;
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			if(i>a[j])printf("*");
			else printf(".");
		}
		puts("");
	}
	return 0;
}

D 小红统计区间(easy)

思路:

这个只看区间之和,所以先算前缀和数组a,区间 [ l , r ] [l, r] [l,r] 的和就是 a [ r ] − a [ l − 1 ] a[r]-a[l-1] a[r]a[l1]。区间和大于等于k,也就是 a [ r ] − a [ l − 1 ] ≥ k a[r]-a[l-1] \ge k a[r]a[l1]k。枚举 r,我们要找的其实就是有多少个 a [ l − 1 ] a[l-1] a[l1] 满足条件,换句话说,就是找 l − 1 ∈ [ 0 , r − 1 ] l-1 \in [0,r-1] l1[0,r1]中 有多少个 a [ l − 1 ] ≤ a [ r ] − k a[l-1] \le a[r]-k a[l1]a[r]k

因为 每个元素都>0 所以这个前缀和数组是单调递增的,所以可以二分去找这个第一个不满足条件的位置,它前面的左端点都是符合条件的。枚举r,然后加上符合条件的左端点个数,累加起来就是答案。时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

题解还给出了双指针的解法,用两个指针(模拟指针,其实就是下标)。用 l l l r r r 分别代表左右端点, r r r 向右移动区间和一定增大, l l l 向右移动区间和一定减小。因此每次 r r r 向右移动一位,然后尝试把 l l l 向右移动,直到 l l l 不能移动(就是移动后会破坏区间和大于等于k的条件),这时候 l l l 前面的端点都可以是合法的左端点,直接累加起来就能得到最后答案了。由于两个指针都只向右移动,总的移动次数是 2 ∗ n 2*n 2n,所以时间复杂度是 O ( n ) O(n) O(n)的。

前缀和和计数可以同时进行。

code:

二分:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e5+5;
typedef long long ll;

int n;
ll a[maxn],k;

int main(){
	cin>>n>>k;
	ll ans=0;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		a[i]+=a[i-1];
		ans+=upper_bound(a,a+i,a[i]-k)-a;//a[r]-k>=a[l-1]
	}
	cout<<ans<<endl;
	return 0;
}

双指针:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e5+5;
typedef long long ll;

int n;
ll a[maxn],k;

int main(){
	cin>>n>>k;
	ll ans=0;
	for(int i=1,l=0,r=1;i<=n;i++,r++){
		cin>>a[i];
		a[i]+=a[i-1];
		
		//如果区间[l+1,r]之和大于k,l++
		while(a[r]-a[l]>=k)l++;
		ans+=l;
	}
	cout<<ans<<endl;
	return 0;
}

E 小红的好数组

思路:

一开始看假题了,以为子数组的长度不定(连续子数组长度固定为3),之后看了一眼题解会了。
长度为3的子数组可以通过用长为3的窗口从头移动到尾来全部枚举出来,这个长为3的窗口向右移动的时候会增加一个元素,同时减少一个元素,如果要保证奇偶性质不变,就必须保证增加一个奇数,就减少一个奇数,反之增加一个偶数,就减少一个偶数。那么下标为
1 , 4 , 7 , 10 , … , 3 × i + 1 1,4,7,10,\dots,3\times i+1 1,4,7,10,,3×i+1位置上的所有数奇偶性相同,同理下标为
2 , 5 , 8 , 11 , … , 3 × i + 2 2,5,8,11,\dots,3\times i+2 2,5,8,11,,3×i+2以及
3 , 6 , 9 , 12 , … , 3 × i + 3 3,6,9,12,\dots,3\times i+3 3,6,9,12,,3×i+3位置上的所有数奇偶性也是绑定的。

我们去暴力枚举前三个数的奇偶性,就可以确定所有数的奇偶性,前面三个数的奇偶性一共八种可能,即:

偶 偶 偶
偶 偶 奇
偶 奇 偶
奇 偶 偶
偶 奇 奇
奇 偶 奇
奇 奇 偶
奇 奇 奇

满足和为偶数的有四种,即:

偶 偶 偶
偶 奇 奇
奇 偶 奇
奇 奇 偶

一个位置要保证填入的数 ≤ k \le k k,填入偶数可以有 ⌊ k 2 ⌋ \left\lfloor \frac k 2 \right\rfloor 2k 种选择,填入奇数可以有 ⌈ k 2 ⌉ \left\lceil \frac k 2 \right\rceil 2k种选择。所以找到偶数位置有多少个,奇数位置有多少,根据分步乘法计数原理 乘起来即可,可以用快速幂优化。

code:

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;

ll n,k;
ll n1,n2,n3,a1,a2,a3,a4;
ll qpow(ll a,ll b){
	ll ans=1,base=a;
	while(b){
		if(b&1){
			ans=(ans*base)%mod;
		}
		base=(base*base)%mod;
		b>>=1;
	}
	return ans;
} 

int main(){
	cin>>n>>k;
	n1=(n+2)/3;
	n2=(n+1)/3;
	n3=n/3;
//	printf("%lld %lld %lld\n",n1,n2,n3);
	
	a1=qpow(k/2,n1)*qpow(k/2,n2)%mod*qpow(k/2,n3)%mod;//第一种情况的个数
	a2=qpow(k/2,n1)*qpow((k+1)/2,n2)%mod*qpow((k+1)/2,n3)%mod;//第二种情况的个数
	a3=qpow((k+1)/2,n1)*qpow(k/2,n2)%mod*qpow((k+1)/2,n3)%mod;//第三种情况的个数
	a4=qpow((k+1)/2,n1)*qpow((k+1)/2,n2)%mod*qpow(k/2,n3)%mod;//第四种情况的个数
	
	cout<<(a1+a2+a3+a4)%mod;
	return 0;
}

F 小红统计区间(hard)

思路

和D题区别在于元素有可能<0,所以前缀和的单调性性质不存在了。依靠单调性的双指针和二分显然不能用了。仔细观察,如果a是前缀和数组,发现我们其实要找的是前r个左端点中所有小于等于 a r − k a_r-k ark 的前缀和的个数,需要动态的 O ( l o g n ) O(logn) O(logn)的加入每个前缀和,并查询小于等于某个数的前缀和个数。这个前缀和可能很大,而且我们不需要关心前缀和具体是什么,而只需要知道相对于它小的前缀和个数,所以用离散化+树状数组,这种做法相当经典。

具体来说,先算出前缀和数组,并把前缀和离散化,这样每个左端点前缀和都有一个相对大小位置 i i i(相当于它是第 i 大),每次加入一个左端点前缀和,就在树状数组中给它的相对大小位置上加1(表示第 i 大位置上的数个数+1),查询所有小于等于k的前缀和个数时 相当于查询树状数组中1 ~ k中数的个数。

前缀和离散化之后枚举右端点r,查询小于等于 a [ r ] − k a[r]-k a[r]k 的左端点个数。查询结束后它就可以作为一个左端点了,加入到树状数组中。

a [ i ] − k a[i]-k a[i]k 可以不离散化,而是在查询的时候在排序离散化后的数组中找最后一个小于等于 a [ i ] − k a[i]-k a[i]k 的数据,改为查询这个数即可。时间复杂度排序离散化是 O ( n l o g n ) O(nlogn) O(nlogn)的,树状数组查询是 O ( n l o g n ) O(nlogn) O(nlogn)的,加上每次在排序离散化后的数组中二分找最后一个小于等于 a [ i ] − k a[i]-k a[i]k 的数据,最坏情况是 O ( l o g n ) O(logn) O(logn)的(没有去重,cnt=n),查询的总时间复杂度是 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n),1e5稳过。树状数组敲一遍下来还蛮快的,就几个小函数,树状数组love。

code:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e5+5;
typedef long long ll;

int n;
ll a[maxn],k;

int cnt;
ll t[maxn];
inline int getidx(ll x){
	return lower_bound(t+1,t+cnt+1,x)-t;
}

int tr[maxn];
int lowbit(int x){return x&-x;}
void pp(int x){
	for(int i=x;i<=cnt;i+=lowbit(i))
		tr[i]++;
}
int query(int x){
	int ans=0;
	for(int i=x;i;i-=lowbit(i))
		ans+=tr[i];
	return ans;
}
inline int query(int l,int r){
	return query(r)-query(l-1);
}
inline int lowerbound(ll x){
//	upper_bound()-t找到的是第一个大于x的数的位置,-1就退到了最后一个小于等于x的位置上
	int idx=upper_bound(t+1,t+cnt+1,x)-t-1;
//	printf("%lld %lld %lld\n",x,idx,query(idx));
	return query(idx);
}

int main(){
	cin>>n>>k;
	ll ans=0;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		a[i]+=a[i-1];
		t[++cnt]=a[i];
	}
//	for(int i=1;i<=n;i++)
//		cout<<a[i]<<" ";
//	puts("");
	//因为左端点前缀和可以是a[0],即l-1=0,所以额外加上这个左端点
	t[++cnt]=0;
	sort(t+1,t+cnt+1);
	cnt=unique(t+1,t+cnt+1)-t-1;
//	for(int i=1;i<=cnt;i++)
//		cout<<t[i]<<" ";
//	puts("");
	
	for(int i=1;i<=n;i++){
		//把上一个循环中的右端点作为左端点加入树状数组
		pp(getidx(a[i-1]));
		//查询前i个左端点中小于等于a[i]-k的个数 
		ans+=lowerbound(a[i]-k);
	}
	
	cout<<ans<<endl;
	return 0;
}
  • 35
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牛客 a卷2022年第四季度的华为题目中,要求考生设计一种高效的数据结构,能够支持以下几种操作: 1. 添加一个元素 2. 删除一个元素 3. 查找是否存在某个元素 4. 返回元素的总数 该数据结构要求满足空间复杂度较小、时间复杂度较低、能够快速地进行查找和修改等多种操作。 想要编写这样一种数据结构,我们可以参考许多已有的经典算法与数据结构,如二叉树、哈希表、红黑树等,通过综合利用它们的优点来实现这个问题的解决。 例如,我们可以通过哈希表来存储所有元素的值,并在每个哈希链表的元素中再使用红黑树来进行排序与查找。这样,我们既能够轻松地进行元素的添加和删除操作,也能够在查找较大数据范围和数量时保持较高的速度与效率。同时,由于使用了多个数据结构来协同完成这个问题,我们也能够在空间复杂度上适度地进行优化。 当然,在具体设计这个数据结构的过程中,我们还需要考虑一些实践中的细节问题,例如如何避免哈希冲突、如何处理数据丢失与被删除元素所占用的空间等问题,这都需要相应的算法与流程来进行处理。 总体来看,设计这种支持多种操作的高效数据结构,需要我们具备丰富的算法知识和编程实践能力,同时需要我们在具体处理问题时能够将多种算法和数据结构进行有效地结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值