大模型预训练是指在大型神经网络(例如 BERT、GPT、T5 等自然语言处理模型或 ViT 等视觉模型)上,使用大规模数据进行初步训练,以学习通用的特征表示或知识。预训练是大模型训练中的重要阶段,能够帮助模型掌握广泛的基础知识,从而更好地适应各种下游任务。
预训练的主要过程
预训练大模型通常分为两个阶段:
-
预训练阶段:
在这一阶段,模型在大规模的无监督或弱监督数据集上进行训练,目的是让模型学习通用的特征和表示。常见的训练任务包括语言模型、掩蔽语言模型(Masked Language Modeling,MLM)、自回归语言模型(Auto-regressive Language Model),或用于计算机视觉领域的图像分类、图像掩蔽建模等任务。 -
微调阶段(Fine-tuning):
预训练完成后,模型在较小的标注数据集上进行微调,适应具体的下游任务,如文本分类、问答、机器翻译或图像分割等。通过微调,模型能够在新的任务上获得较高的性能,而无需从头开始训练。
预训练的动机和优点
-
减少标注数据需求:
预训练模型利用大规模的无监督数据(例如互联网文本或未标注图像),让模型掌握丰富的背景知识和通用特征表示。相比于直接在小规模数据集上训练,预训练模型能够更好地泛化,减少对大量标注数据的需求。 -
加快训练速度</