在多模态大模型(如 CLIP、BLIP、DALL-E 等)中,实现文本与图片的对齐是为了让模型能够理解并关联不同模态的数据,即将文本和图片映射到相同的语义空间,以便它们可以进行交互和对比。实现文本与图片对齐的核心在于将两种模态的数据表示转换为共同的嵌入空间,然后使用对比学习等方法进行对齐。
1. 文本与图片的对齐流程概述
- 特征提取:首先,分别从文本和图片中提取特征。
- 文本可以通过预训练的语言模型(如 Transformer、BERT、GPT)进行编码。
- 图片则可以通过卷积神经网络(如 ResNet、Vision Transformer)进行编码。
- 共享语义空间:通过设计共同的嵌入空间,将文本特征和图片特征映射到同一空间中,使得相同语义的文本和图片在这个空间中的距离较近。
- 对齐学习:通过对比学习或其他损失函数,使得配对的文本和图片的嵌入更加接近,而不配对的嵌入距离增大,从而实现跨模态对齐。
2. 文本与图片的特征提取
在多模态模型中,文本和图片的特征提取方法不同,但最终目的是将它们转换成向量表示。
-
文本特征提取:
通常使用预训练的语言模型,如 GPT、BERT、Transformer 等。模型会将输入的文本(例如句子、段落)编码为一个固定维度的向量。from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') inputs = tokenizer("A description of an image", return_tensors="pt") outputs = model(**inputs) text_embedding = outputs.last_hidden_state.mean(dim=1<