
深度学习
文章平均质量分 50
侃山
这个作者很懒,什么都没留下…
展开
-
Attention层的FLOPs计算
假如矩阵A维度为m*n,矩阵B维度为n*p,那么二者相乘,得到C矩阵m*p,其中每个元素需要计算n次乘法和n-1次加法才能得到。也就是说,在一次矩阵乘法中,FLOPs为。原创 2025-04-30 16:26:05 · 46 阅读 · 0 评论 -
Precision-Recall曲线
这里和ROC曲线有一点不同:我们的虚线并不是”随机猜“的曲线,而是将所有样本都分为正类的曲线。另外,Precision和Recall都是越大越好。同样地,真实曲线(蓝色曲线)越靠近右上角越好。那么,我们同样可以用AUC来衡量真实分类器曲线的性能,一般分类器的性能同样是0.5到1之间的一个值。原创 2025-04-26 10:55:00 · 137 阅读 · 0 评论 -
ROC 曲线 和 AUC
而二元分类时输出的是0~1的概率,那么threshold的选取不同,就会导致不同的分类结果。于是,我们分别选取多个不同的threshold,就会得到多个不同的二元组(TPR,FPR),从而绘制出点图。注意,ROC曲线一定会经过(0,0)和(1,1)两点,代表全部分类为负和全部分类为正的结果。也就是说,(TPR,FPR)离(0,1)越近越好。不难观察到,紫色曲线的AUC,也就是在0到1区间上的积分为1,虚线(乱猜)的AUC为0.5,一般分类器的AUC在0.5到1之间。TPR越大越好,FPR越小越好。原创 2025-04-26 10:33:11 · 226 阅读 · 0 评论 -
怎样记忆Precision、Recall?
现在对所有样本进行预测。其中蓝色圆圈以内预测为正,蓝色圆圈以外预测为负。其中大矩形表示所有样本,左边的矩形表示正样本,右边的矩形表示负样本。FP(False Positive):标签为负,预测为正。FN(False Negative):标签为正,预测为负。TN(True Negative):标签为负,预测为负。TP(True Posive):标签为正,预测为正。Precision:TP在圆形中的比例。Recall:TP在左边矩形中的比例。TP+FP:预测为正的所有样本。TP+FN:标签为正的所有样本。原创 2025-04-24 22:17:47 · 271 阅读 · 0 评论 -
R-CNN,Fast-R-CNN-Faster-R-CNN个人笔记
注:此博客主要为了方便笔者快速复习,只讲大致框架,只讲推理,不讲训练,因此内容不会很详实。原创 2025-04-24 20:14:49 · 671 阅读 · 0 评论 -
Grouped Query Attention (GQA) PyTorch实现
一旦读懂了MQA,GQA的实现思路几乎完全一样,只是多用了一个不太常用的函数。关于这个函数,直接点击链接看笔者相关文章就行了,挺好懂的。为了读懂GQA,建议读者了解一下。的实现,这样顺着读下来会更顺手。原创 2025-04-19 17:38:38 · 403 阅读 · 0 评论 -
Multi-Query Attention (MQA) PyTorch 实现
和多头注意力机制的唯一区别:K、V在不同的head之间实现了复用,而对于不同的头,Q依然不同。原创 2025-04-19 10:56:30 · 258 阅读 · 0 评论