跟我一起学《深度学习》 第二章 线性代数(2.1 标量、向量、矩阵、张量)
最近很菜机
2020-12-06 01:35:05
43
收藏
分类专栏:
跟我一起学《深度学习》
文章标签:
深度学习
机器学习
神经网络
人工智能
线性代数
最后发布:2020-12-06 01:35:05
首次发布:2020-12-06 01:35:05
版权声明:本文为博主原创文章,遵循<a href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank" rel="noopener"> CC 4.0 BY-SA </a>版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/qq_45812941/article/details/110730317
版权
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
最近很菜机
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
深度
学
习的数
学
基础 1.
线性代数
:
标量
、
向量
、
矩阵
和
张量
谢厂节的博客
11-14
2830
标量
(scalar) 一个标题就是一个单独的数。用斜体表示
标量
。
标量
通常使用小写变量名称。 在介绍标题时,会明确它是哪种类型的数,如: 定义实数
标量
时,可能会说: “令 s∈Rs∈Rs \in R 表示一条线的斜率”; 在定义自然数
标量
时,可能会说 “令n∈Nn∈Nn \in N”表示元素的数目。
向量
(vector) 一个
向量
是一列数,这些数是有序排列的。
向量
中的元素可以用 ...
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
“速评一下”
线性代数
——
标量
,
向量
,
矩阵
,
张量
qq_38021750的博客
04-09
398
线性代数
笔记——
标量
,
向量
,
矩阵
,
张量
标量
向量
矩阵
张量
标量
一个
标量
是一个单独的数,通常用斜体的小写变量表示,例如“令n∈Nn\in Nn∈N表示元素的数目”
向量
一个
向量
是一列数,通常用斜体的粗体变量表示,例如 : x=[x1x2⋮xn] x= \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} x=⎣⎢⎢⎢⎡x1x2...
一篇文
章
理解
线性代数
中的
标量
、
向量
、
矩阵
和
张量
刘坏坏的博客
06-08
341
经过之前的一些积累,终于有勇气开始进军机器
学
习了!说实话,机器
学
习 这个概念是我入行的最纯粹的原因,包括大
学
选专业、
学
习 Python 语言…这些有时间仔细梳理下经历再写,总之这个系列的文
章
就是我自
学
机器
学
习 的笔记,各位看看就好,希望能为一些想入门但无从下手的小伙伴,提供一些帮助。另外我会采用通俗易懂的方式描述一些概念上的东西,我本人小白一枚,如果在这系列的文
章
中有什么错误,欢迎各路大神指正!在此谢过。 Ps:请注意,本文中所有“_”后加数字均表示为下标。 接下来几天会搞定
线性代数
,毕竟 不懂线代的话连
机器
学
习的数
学
基础 -
标量
,
向量
,
矩阵
与
张量
weixin_30570101的博客
08-27
543
标量
,
向量
,
矩阵
与
张量
1、
标量
一个
标量
就是一个单独的数,一般用小写的的变量名称表示。 2、
向量
一个
向量
就是一列数,这些数是有序排列的。用过次序中的索引,我们可以确定每个单独的数。通常会赋予
向量
粗体的小写名称。当我们需要明确表示
向量
中的元素时,我们会将元素排列成一个方括号包围的纵柱: 我们可以把
向量
看作空间中的点,每个元素...
国民度No.1,Python到底做了什么?
CSDN学院
01-20
1万+
毫无疑问,Python 是当下最火的编程语言之一。可以说 Python 的崛起,将编程提高了一个层次,它不再只是程序员专用,各个岗位都在
学
习 Python,导致普及度和国民度瞬间上升,Python 对整个行业来说都是极其有利的。 正如 TIOBE 官方评价:Python 无处不在,其实自 2018 年开始,各行各业便开始布局 Python。 在教育界, 1、自 2018 年 3 月起,在计算机二级考试加入了“Python 语言程序设计”科目; 2、2018 年,浙江省信息技术教材宣布弃用 VB 语言
【
线性代数
】
标量
、
向量
、
矩阵
和
张量
(scalar, vector, matrix & tensor)
北境の守望者
07-23
8926
标量
(scalar)
向量
(vector)
矩阵
(matrix)
张量
(tensor)
线性代数
中用到的几个基本的数
学
概念:
标量
(scalar) 一个
标量
就是一个单独的数,我们在使用
标量
时,一般都要明确给出它是那种类型的数,例如 s∈R,n∈Ns∈R,n∈Ns \in \mathbb R, n \in \mathbb N。
向量
(vector) 一个
向量
是一列数。这些数是...
线性代数
---
标量
、
向量
、
矩阵
和
张量
weixin_33924312的博客
01-11
57
2019独角兽企业重金招聘Python工程师标准>>> ...
深度
学
习的数
学
基础(一)
标量
、
向量
、
矩阵
及
张量
黄小华的专栏
05-12
205
深度
学
习
深度
学
习基础 -
标量
、
向量
、
矩阵
、
张量
flyfish
03-24
693
深度
学
习基础 -
标量
、
向量
、
矩阵
、
张量
邵盛松 公元前约350年前,古希腊著名
学
者亚里士多德 在研究力的时候发现,作用在物体同一点上的两个力,实际结果不是一个简单的加法,需要一个平行四边形法则来计算.
向量
这个词是怎么来的 1
向量
与矢量 没有差别,一个词的两个叫法 2
向量
来自英文的vector,而英文的vector来自拉丁文的vehere,意思是“携带”,其含义隐含着将某物从此处带到彼处...
线性代数
——
标量
、
向量
、
矩阵
、
张量
的定义
qq_37601846的博客
12-12
129
学
习
线性代数
会涉及以下几个数
学
概念:
标量
,
向量
,
矩阵
和
张量
的关系
hellosc2的博客
02-20
2476
在
深度
学
习中,大家肯定都知道这几个词:
标量
,
向量
,
矩阵
,
张量
。但是要是让我们具体说下他们,可能一下子找不出头绪。下面介绍一下他们之间的关系:
标量
(scalar) 一个
标量
表示一个单独的数,它不同于
线性代数
中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示
标量
。
标量
通常被赋予小写的变量名称。
向量
(vector) 一个
向量
表示一组有序排列的数。通过次序中的索引,我们可以确定...
标量
、
向量
、
矩阵
与
张量
mxrsunshine的博客
07-28
56
如题
标量
、
向量
、
矩阵
和
张量
的区别
HELLOW,文浩
12-08
46
深度
学
习中会经常涉及到
张量
的维数、
向量
的维数的概念,我发现自己一直把它们给混淆了,原因是被一些约定俗成的叫法扰乱了,下面来介绍一下它们的区别。 首先,
张量
的维数等价于
张量
的阶数。 0维的
张量
就是
标量
,1维的
张量
就是
向量
,2维的
张量
就是
矩阵
,大于等于3维的
张量
没有名称,统一叫做
张量
。下面举例:
标量
:很简单,就是一个数,1,2,5,108等等
向量
:[1,2],[1,2,3],[1,2,3,4],[3,5,67,·······,n]都是
向量
矩阵
:[[1,3],[3,5]],[[1,2,3],[2,3,4]
TensorFlow
学
习笔记(1)——
标量
、
向量
、
矩阵
、
张量
LiQZ的博客
10-15
265
从开始做NLP开始,不知道接触过这几个概念多少次,也不知道百度过多少次,每次都会选择性遗忘,所以这一次就写一份统一的笔记用作记录。 在这里感谢我阔耐温柔贤惠大方美丽的同桌给我分享了一份她的笔记! 在这篇文
章
中,我争取以一个计算机
学
生的视角来讲解该知识。 作为一个非数
学
非物理的计算机科班出身再加上数二72分的辣鸡程序员来说,我最开始以为这一坨是很深奥,很复杂的内容,尤其是在你百度
张量
的时候,如果不加上“计算机”作为限定语,会是这样的: 嗯,右下角是我。 当时我还以为这是一个多么复杂,多么高深的问题,然后.
8.1
标量
、
向量
、
矩阵
和
张量
很嗨
06-29
1万+
线性代数
作为数
学
的一个分支,广泛用于科
学
和工程中,掌握好
线性代数
对于理解和从事机器
学
习算法相关工作是很有必要的。因此,本书首先探讨一些必备的
线性代数
知识。
2.1
标量
、
向量
、
矩阵
和
张量
weixin_34224941的博客
06-02
44
标量
:一个
标量
就是一个单独的数,它不同于
线性代数
中研究的其他大部分对象。
向量
:一个
向量
是一列数,可以把
向量
看作空间中的点,每个元素是不同坐标轴上的坐标。
矩阵
:
矩阵
是一个二维数组,其中的每一个元素由两个索引所确定。
张量
:一般的,一个数组中的元素分布在若干维坐标的规则网格中,我们称之为
张量
。
矩阵
的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线。 广播:...
机器
学
习
深度
学
习用到的数
学
基础知识
标量
、
向量
、
矩阵
和
张量
lwl8881081的专栏
09-03
599
学
习
线性代数
,会涉及以下几类数
学
概念: •
标量
(scalar):一个
标量
就是一个单独的数,它不同于
线性代数
中研究的其他 大部分对象(通常是多个数的数组)。我们用斜体表示
标量
。
标量
通常被赋予小 写的变量名称。当我们介绍
标量
时,会明确它们是哪种类型的数。比如,在定 义实数
标量
时,我们可能会说 ‘‘令 s ∈ R 表示一条线的斜率’’;在定义自然数标 量时,我们可能会说 ‘‘令 n ∈
【
深度
学
习-花书】第二
章
线性代数
qq_31267769的博客
11-16
53
2.1
标量
、
向量
、
矩阵
和
张量
标量
(scalar) 一个
标量
就是一个单独的数,就把他理解为一个普通的数。例如:2,3,5,这些都是
标量
,还有nN,这些也是
标量
,表示定义了一个自然数
标量
。
向量
(vector)
向量
是一个和
标量
相对的概念,一个
向量
是一组数,并且这组数是有序的。因此我们可以通过确定的索引确定每个单数的数。当我们定义一个
向量
x,这个
向量
包含n个元素,并且每个元素如果都属于实数...
深度
学
习第二
章
-
线性代数
笔记
eclipsycn的博客
07-26
1418
本
章
主要介绍与
深度
学
习相关的
线性代数
知识。
2.1
标量
、
向量
、
矩阵
和
张量
标量
(scalar) 、
向量
(vector)、
矩阵
(matrix)
张量
(tensor) :一般地,一个数组中的元素分布在若干维坐标的规则网格中,称之为
张量
。 转置 (transpose) : 以主对角线(左上到右下)为轴进行镜像操作。将
矩阵
A\mathbf{A}转置表示为AT\mathbf{A}^\mathbf{T}
C++程序设计
05-19
C++
学
习资源的完整版,是所有编程语言的基础,讲述清晰,有系统的知识体系
©️2020 CSDN
皮肤主题: 1024
设计师:上身试试
返回首页