判断点是否在旋转矩形内(OpenCV可利用)

#include<iostream>
#include<vector>
using namespace std;
struct Point{
	int x;
	int y;
};
bool judgePointInRect(vector<Point>&Points,int ROWS,int COLS){
//将四个点定位找出最大y,与最小y
	bool rectIsLevel=false;
	if(Points.size()!=5){//必须为5个点
		return false;
	}
	int min_y=0,max_y=0,min_x=0,max_x=0;
	for(int i=0;i<4;i++){
		if(Points[min_y].y>Points[i].y){
			min_y=i;
		}
		if(Points[max_y].y<Points[i].y){
			max_y=i;
		}
		if(Points[max_x].x<Points[i].x){
			max_x=i;
		}
		if(Points[min_x].x>Points[i].x){
			min_x=i;
		}
	}
	int max_y_num=0,min_y_num=0,max_x_num=0,min_x_num=0;
	for(int i=0;i<4;i++){
		if(Points[min_y].y==Points[i].y){
			min_y_num++;
		}
		if(Points[max_y].y==Points[i].y){
			max_y_num++;
		}
		if(Points[max_x].x==Points[i].x){
			max_x_num++;
		}
		if(Points[min_x].x==Points[i].x){
			min_x_num++;
		}	
	}
	if(max_y_num==2&&min_y_num==2&&max_x_num==2&&min_x_num==2){
		rectIsLevel=true;
	}
	//已经知道,最左边,最右边,最上边,最下边的点
	//矩形是水平的
	if(rectIsLevel==false){
	//建立四个线性方程
	//y=kx+b
	//y k x b均为浮点数
		float k=0,b=0,dx=0,dy=0,judge=0;
		bool statusArray[4]={false};
		//最左边的点,与最上边的点,k<0
		dx=Points[min_y].x-Points[min_x].x;
		dy=Points[min_x].y-Points[min_y].y;
		k=0-(dy/dx);
		//求解b
		b=Points[min_x].y-k*Points[min_x].x;
		//求解(0,0),对于 kx+b-y是大于0还是小于0
		judge=k*0+b-0;
		if(judge<0&&k*Points[4].x+b-Points[4].y>0){
			statusArray[0]=true;
		}else if(judge>0&&k*Points[4].x+b-Points[4].y<0){
			statusArray[0]=true;
		}else{
			statusArray[0]=false;
		}

		//最上边的点与最右边的点 k>0
		dx=Points[max_x].x-Points[min_y].x;
		dy=Points[max_x].y-Points[min_y].y;
		k=dy/dx;
		//求解b
		b=Points[max_x].y-k*Points[max_x].x;
		//求解(rows,0),对于 kx+b-y是大于0还是小于0
		judge=k*ROWS+b-0;
		if(judge<0&&k*Points[4].x+b-Points[4].y>0){
			statusArray[1]=true;
		}else if(judge>0&&k*Points[4].x+b-Points[4].y<0){
			statusArray[1]=true;
		}else{
			statusArray[1]=false;
		}
		
		//最右边的点与最下边的点 k<0
		dx=Points[max_x].x-Points[max_y].x;
		dy=Points[max_y].y-Points[max_x].y;
		k=0-dy/dx;
		//求解b
		b=Points[max_x].y-k*Points[max_x].x;
		//求解(ROWS,COLS),对于 kx+b-y
		judge=k*ROWS+b-COLS;
		if(judge<0&&k*Points[4].x+b-Points[4].y>0){
			statusArray[2]=true;
		}else if(judge>0&&k*Points[4].x+b-Points[4].y<0){
			statusArray[2]=true;
		}else{
			statusArray[2]=false;
		}
		//最左边的点,与最下边的点 k>0
		dx=Points[max_y].x-Points[min_x].x;
		dy=Points[max_y].y-Points[min_x].y;
		k=dy/dx;
		//求解b
		b=Points[max_y].y-k*Points[max_y].x;
		//求解(0,COLS),对于 kx+b-y
		judge=k*0+b-COLS;
		if(judge<0&&k*Points[4].x+b-Points[4].y>0){
			statusArray[3]=true;
		}else if(judge>0&&k*Points[4].x+b-Points[4].y<0){
			statusArray[3]=true;
		}else{
			statusArray[3]=false;
		}
		
		//如果数组内全部为true则返回true,否则返回false
		for(int i=0;i<4;i++){
			if(statusArray[i]!=true){
				return false;
			}
		}
		return true;
	}else{
	//矩形不是水平的,可以直接判断点是否在这个矩形里面
		if(Points[4].x>=Points[min_x].x&&Points[4].x<=Points[max_x].x){//判断x
			if(Points[4].y>=Points[min_y].y&&Points[4].y<=Points[max_y].y){
				return true;
			}else{
				return false;
			}
		}else{
			return false;
		}
	}
	return true;
}
int main(int argc,char**argv){
	vector<Point>points;
	struct Point P;
	int x[5]={0,2,3,1,1};
	int y[5]={2,0,1,3,3};
	for(int i=0;i<5;i++){
		P.x=x[i];
		P.y=y[i];
		points.push_back(P);
	}
	cout<<judgePointInRect(points,500,500)<<endl;
	return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高万禄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值