我也是个菜鸡,当看到这个题时,想到肯定是枚举,但怎么取出重复的呢,这是个大问题。
看来是不能简单穷举的。
像这种题一般将其排序可能会更好求解些,因为就可以根据求和大小略过某些元素
然后看了看评论区,恍然大悟,有这种操作。
首先我们的问题出在了,怎么取出重复情况,那么研究一下什么时候出现重复请情况
(a,b,c) (d,e,f) 两三元组内至少有两个元素相同时,两个三元组一定是相同的。
则我们以一个例子来展开讨论
-1 0 1 2 -1 4 2
排序
-1 -1 0 1 2 2 4
i b c
计算一下和 -1-1+4 则>0 则应该将三元组变小 ,来移动c向左
-1 -1 0 1 2 2 4
i b c
等于0了 则找到一组结果
去掉重复:可见如果c-- 则遇到重复 因为nums[c]==nums[c-1] ,一旦nums[i]与 nums[c]一样,则一定重复
则将c退到不一样为止
那么对于位置b与c位置同理,都应该移动到不一样为止 这样就能取出 当 (nums[i],X,X)确定时,去除X,X相同的情况。
当b不再小于c,则将i++ b=i+1 c=nums.size()-1 ,重头再来,知道i指针将其遍历完为止
但好像还是有问题 因为去除了 (nums[i],X,X) X,X重复的情况.
解决:
当 遍历到i,如果nums[i]与nums[i+1]相等则没必要将i指针跳到 i+1 位置检测三元组,因为
在i位置,已经找到了符合要求的(nums[i],X,X) 知道跳到与上一个不同,再检测三元组,移动i直到与上一次位置数值不同,则i位置将永远不会再遇到那个重复nums[i]
class Solution {
public:
// 注意点: 三元组数据从小到大排列
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> back;
//判断nums的元素个数,如果小于3个则将返回[]
if(nums.size()<3){return back;}
//将其排序
sort(nums.begin(),nums.end());
//排序后第一个元素如果大于1,则根本没有三元组
//ptr
for(int i=0;i<nums.size();i++){
//去重情况 -1 -1 2
//如果 找到了-1 -1 2,则遍历到第二个-1的时候已经灭有必要便利了,-1 X X,的情况已经在i-1位置
//时找过了,则其就不用再找了
if(i>0&&nums[i]==nums[i-1]){continue;}
int left=i+1;
int right=nums.size()-1;
while(right>left){
//三个数相加>0,则说明大了,i left right nums[i]+nums[left]已经是最小组合了,只能将right--
if(nums[i]+nums[left]+nums[right]>0){
right--;
//如果三个数相加<0,则说明小了,则将其变大,left++,right已经是最大了,不能减了
}else if(nums[i]+nums[left]+nums[right]<0){
left++;
}else{//等于0
//输出答案
back.push_back(vector<int>{nums[i],nums[left],nums[right]});
//进行去重
//如果nums[left+1] 与 nums[left]相等 则没必要在跳到left+1位置,因为 {nums[i],nums[left],3-nums[i]-nums[left]}已经存在
while(right>left&&nums[left]==nums[left+1]){left++;}
//同理nums[right-1] 与 nums[right]相等 则没必要跳到right-1位置,因为{nums[i],nums[right],3-nums[right]}已存在
while(right>left&&nums[right]==nums[right-1]){right--;}
//此时left是刚才的nums[left]的最后一个nums[left]的下标了,即left++ 即可得到不同的nums[left]
//因为如果nums[left]重复的话,则三元组重复,因为一旦两个重复则第三个一定重复
//right同理
//双指针同时向中间会合
right--;
left++;
}
}
}
return back;
}
};